Description: Obsolete version of rnmptc as of 17-Apr-2024. (Contributed by Glauco Siliprandi, 11-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnmptcOLD.f | |- F = ( x e. A |-> B ) |
|
rnmptcOLD.b | |- ( ( ph /\ x e. A ) -> B e. C ) |
||
rnmptcOLD.a | |- ( ph -> A =/= (/) ) |
||
Assertion | rnmptcOLD | |- ( ph -> ran F = { B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptcOLD.f | |- F = ( x e. A |-> B ) |
|
2 | rnmptcOLD.b | |- ( ( ph /\ x e. A ) -> B e. C ) |
|
3 | rnmptcOLD.a | |- ( ph -> A =/= (/) ) |
|
4 | fconstmpt | |- ( A X. { B } ) = ( x e. A |-> B ) |
|
5 | 1 4 | eqtr4i | |- F = ( A X. { B } ) |
6 | 2 1 | fmptd | |- ( ph -> F : A --> C ) |
7 | 6 | ffnd | |- ( ph -> F Fn A ) |
8 | fconst5 | |- ( ( F Fn A /\ A =/= (/) ) -> ( F = ( A X. { B } ) <-> ran F = { B } ) ) |
|
9 | 7 3 8 | syl2anc | |- ( ph -> ( F = ( A X. { B } ) <-> ran F = { B } ) ) |
10 | 5 9 | mpbii | |- ( ph -> ran F = { B } ) |