Metamath Proof Explorer


Theorem rnmptfi

Description: The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis rnmptfi.a
|- A = ( x e. B |-> C )
Assertion rnmptfi
|- ( B e. Fin -> ran A e. Fin )

Proof

Step Hyp Ref Expression
1 rnmptfi.a
 |-  A = ( x e. B |-> C )
2 mptfi
 |-  ( B e. Fin -> ( x e. B |-> C ) e. Fin )
3 1 2 eqeltrid
 |-  ( B e. Fin -> A e. Fin )
4 rnfi
 |-  ( A e. Fin -> ran A e. Fin )
5 3 4 syl
 |-  ( B e. Fin -> ran A e. Fin )