Step |
Hyp |
Ref |
Expression |
1 |
|
rnmptpr.a |
|- ( ph -> A e. V ) |
2 |
|
rnmptpr.b |
|- ( ph -> B e. W ) |
3 |
|
rnmptpr.f |
|- F = ( x e. { A , B } |-> C ) |
4 |
|
rnmptpr.d |
|- ( x = A -> C = D ) |
5 |
|
rnmptpr.e |
|- ( x = B -> C = E ) |
6 |
4
|
eqeq2d |
|- ( x = A -> ( y = C <-> y = D ) ) |
7 |
5
|
eqeq2d |
|- ( x = B -> ( y = C <-> y = E ) ) |
8 |
6 7
|
rexprg |
|- ( ( A e. V /\ B e. W ) -> ( E. x e. { A , B } y = C <-> ( y = D \/ y = E ) ) ) |
9 |
1 2 8
|
syl2anc |
|- ( ph -> ( E. x e. { A , B } y = C <-> ( y = D \/ y = E ) ) ) |
10 |
3
|
elrnmpt |
|- ( y e. _V -> ( y e. ran F <-> E. x e. { A , B } y = C ) ) |
11 |
10
|
elv |
|- ( y e. ran F <-> E. x e. { A , B } y = C ) |
12 |
|
vex |
|- y e. _V |
13 |
12
|
elpr |
|- ( y e. { D , E } <-> ( y = D \/ y = E ) ) |
14 |
9 11 13
|
3bitr4g |
|- ( ph -> ( y e. ran F <-> y e. { D , E } ) ) |
15 |
14
|
eqrdv |
|- ( ph -> ran F = { D , E } ) |