Metamath Proof Explorer


Theorem rnmptss2

Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptss2.1
|- F/ x ph
rnmptss2.3
|- ( ph -> A C_ B )
rnmptss2.4
|- ( ( ph /\ x e. A ) -> C e. V )
Assertion rnmptss2
|- ( ph -> ran ( x e. A |-> C ) C_ ran ( x e. B |-> C ) )

Proof

Step Hyp Ref Expression
1 rnmptss2.1
 |-  F/ x ph
2 rnmptss2.3
 |-  ( ph -> A C_ B )
3 rnmptss2.4
 |-  ( ( ph /\ x e. A ) -> C e. V )
4 nfmpt1
 |-  F/_ x ( x e. B |-> C )
5 4 nfrn
 |-  F/_ x ran ( x e. B |-> C )
6 eqid
 |-  ( x e. A |-> C ) = ( x e. A |-> C )
7 eqid
 |-  ( x e. B |-> C ) = ( x e. B |-> C )
8 2 sselda
 |-  ( ( ph /\ x e. A ) -> x e. B )
9 7 8 3 elrnmpt1d
 |-  ( ( ph /\ x e. A ) -> C e. ran ( x e. B |-> C ) )
10 1 5 6 9 rnmptssdf
 |-  ( ph -> ran ( x e. A |-> C ) C_ ran ( x e. B |-> C ) )