Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnmptss2.1 | |- F/ x ph  | 
					|
| rnmptss2.3 | |- ( ph -> A C_ B )  | 
					||
| rnmptss2.4 | |- ( ( ph /\ x e. A ) -> C e. V )  | 
					||
| Assertion | rnmptss2 | |- ( ph -> ran ( x e. A |-> C ) C_ ran ( x e. B |-> C ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rnmptss2.1 | |- F/ x ph  | 
						|
| 2 | rnmptss2.3 | |- ( ph -> A C_ B )  | 
						|
| 3 | rnmptss2.4 | |- ( ( ph /\ x e. A ) -> C e. V )  | 
						|
| 4 | nfmpt1 | |- F/_ x ( x e. B |-> C )  | 
						|
| 5 | 4 | nfrn | |- F/_ x ran ( x e. B |-> C )  | 
						
| 6 | eqid | |- ( x e. A |-> C ) = ( x e. A |-> C )  | 
						|
| 7 | eqid | |- ( x e. B |-> C ) = ( x e. B |-> C )  | 
						|
| 8 | 2 | sselda | |- ( ( ph /\ x e. A ) -> x e. B )  | 
						
| 9 | 7 8 3 | elrnmpt1d | |- ( ( ph /\ x e. A ) -> C e. ran ( x e. B |-> C ) )  | 
						
| 10 | 1 5 6 9 | rnmptssdf | |- ( ph -> ran ( x e. A |-> C ) C_ ran ( x e. B |-> C ) )  |