Metamath Proof Explorer


Theorem rnmptssdff

Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses rnmptssdff.1
|- F/ x ph
rnmptssdff.2
|- F/_ x A
rnmptssdff.3
|- F/_ x C
rnmptssdff.4
|- F = ( x e. A |-> B )
rnmptssdff.5
|- ( ( ph /\ x e. A ) -> B e. C )
Assertion rnmptssdff
|- ( ph -> ran F C_ C )

Proof

Step Hyp Ref Expression
1 rnmptssdff.1
 |-  F/ x ph
2 rnmptssdff.2
 |-  F/_ x A
3 rnmptssdff.3
 |-  F/_ x C
4 rnmptssdff.4
 |-  F = ( x e. A |-> B )
5 rnmptssdff.5
 |-  ( ( ph /\ x e. A ) -> B e. C )
6 1 5 ralrimia
 |-  ( ph -> A. x e. A B e. C )
7 2 3 4 rnmptssff
 |-  ( A. x e. A B e. C -> ran F C_ C )
8 6 7 syl
 |-  ( ph -> ran F C_ C )