Metamath Proof Explorer


Theorem rnmptssf

Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptssf.1
|- F/_ x C
rnmptssf.2
|- F = ( x e. A |-> B )
Assertion rnmptssf
|- ( A. x e. A B e. C -> ran F C_ C )

Proof

Step Hyp Ref Expression
1 rnmptssf.1
 |-  F/_ x C
2 rnmptssf.2
 |-  F = ( x e. A |-> B )
3 1 2 fmptf
 |-  ( A. x e. A B e. C <-> F : A --> C )
4 frn
 |-  ( F : A --> C -> ran F C_ C )
5 3 4 sylbi
 |-  ( A. x e. A B e. C -> ran F C_ C )