Metamath Proof Explorer


Theorem rnmptssff

Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses rnmptssff.1
|- F/_ x A
rnmptssff.2
|- F/_ x C
rnmptssff.3
|- F = ( x e. A |-> B )
Assertion rnmptssff
|- ( A. x e. A B e. C -> ran F C_ C )

Proof

Step Hyp Ref Expression
1 rnmptssff.1
 |-  F/_ x A
2 rnmptssff.2
 |-  F/_ x C
3 rnmptssff.3
 |-  F = ( x e. A |-> B )
4 1 2 3 fmptff
 |-  ( A. x e. A B e. C <-> F : A --> C )
5 frn
 |-  ( F : A --> C -> ran F C_ C )
6 4 5 sylbi
 |-  ( A. x e. A B e. C -> ran F C_ C )