Step |
Hyp |
Ref |
Expression |
1 |
|
rnmptssrn.b |
|- ( ( ph /\ x e. A ) -> B e. V ) |
2 |
|
rnmptssrn.y |
|- ( ( ph /\ x e. A ) -> E. y e. C B = D ) |
3 |
|
eqid |
|- ( y e. C |-> D ) = ( y e. C |-> D ) |
4 |
3 2 1
|
elrnmptd |
|- ( ( ph /\ x e. A ) -> B e. ran ( y e. C |-> D ) ) |
5 |
4
|
ralrimiva |
|- ( ph -> A. x e. A B e. ran ( y e. C |-> D ) ) |
6 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
7 |
6
|
rnmptss |
|- ( A. x e. A B e. ran ( y e. C |-> D ) -> ran ( x e. A |-> B ) C_ ran ( y e. C |-> D ) ) |
8 |
5 7
|
syl |
|- ( ph -> ran ( x e. A |-> B ) C_ ran ( y e. C |-> D ) ) |