| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnmptssrn.b |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 2 |  | rnmptssrn.y |  |-  ( ( ph /\ x e. A ) -> E. y e. C B = D ) | 
						
							| 3 |  | eqid |  |-  ( y e. C |-> D ) = ( y e. C |-> D ) | 
						
							| 4 | 3 2 1 | elrnmptd |  |-  ( ( ph /\ x e. A ) -> B e. ran ( y e. C |-> D ) ) | 
						
							| 5 | 4 | ralrimiva |  |-  ( ph -> A. x e. A B e. ran ( y e. C |-> D ) ) | 
						
							| 6 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 7 | 6 | rnmptss |  |-  ( A. x e. A B e. ran ( y e. C |-> D ) -> ran ( x e. A |-> B ) C_ ran ( y e. C |-> D ) ) | 
						
							| 8 | 5 7 | syl |  |-  ( ph -> ran ( x e. A |-> B ) C_ ran ( y e. C |-> D ) ) |