| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-pr |  |-  { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) | 
						
							| 2 | 1 | rneqi |  |-  ran { <. A , C >. , <. B , D >. } = ran ( { <. A , C >. } u. { <. B , D >. } ) | 
						
							| 3 |  | rnsnopg |  |-  ( A e. V -> ran { <. A , C >. } = { C } ) | 
						
							| 4 | 3 | adantr |  |-  ( ( A e. V /\ B e. W ) -> ran { <. A , C >. } = { C } ) | 
						
							| 5 |  | rnsnopg |  |-  ( B e. W -> ran { <. B , D >. } = { D } ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. V /\ B e. W ) -> ran { <. B , D >. } = { D } ) | 
						
							| 7 | 4 6 | uneq12d |  |-  ( ( A e. V /\ B e. W ) -> ( ran { <. A , C >. } u. ran { <. B , D >. } ) = ( { C } u. { D } ) ) | 
						
							| 8 |  | rnun |  |-  ran ( { <. A , C >. } u. { <. B , D >. } ) = ( ran { <. A , C >. } u. ran { <. B , D >. } ) | 
						
							| 9 |  | df-pr |  |-  { C , D } = ( { C } u. { D } ) | 
						
							| 10 | 7 8 9 | 3eqtr4g |  |-  ( ( A e. V /\ B e. W ) -> ran ( { <. A , C >. } u. { <. B , D >. } ) = { C , D } ) | 
						
							| 11 | 2 10 | eqtrid |  |-  ( ( A e. V /\ B e. W ) -> ran { <. A , C >. , <. B , D >. } = { C , D } ) |