Step |
Hyp |
Ref |
Expression |
1 |
|
df-pr |
|- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
2 |
1
|
rneqi |
|- ran { <. A , C >. , <. B , D >. } = ran ( { <. A , C >. } u. { <. B , D >. } ) |
3 |
|
rnsnopg |
|- ( A e. V -> ran { <. A , C >. } = { C } ) |
4 |
3
|
adantr |
|- ( ( A e. V /\ B e. W ) -> ran { <. A , C >. } = { C } ) |
5 |
|
rnsnopg |
|- ( B e. W -> ran { <. B , D >. } = { D } ) |
6 |
5
|
adantl |
|- ( ( A e. V /\ B e. W ) -> ran { <. B , D >. } = { D } ) |
7 |
4 6
|
uneq12d |
|- ( ( A e. V /\ B e. W ) -> ( ran { <. A , C >. } u. ran { <. B , D >. } ) = ( { C } u. { D } ) ) |
8 |
|
rnun |
|- ran ( { <. A , C >. } u. { <. B , D >. } ) = ( ran { <. A , C >. } u. ran { <. B , D >. } ) |
9 |
|
df-pr |
|- { C , D } = ( { C } u. { D } ) |
10 |
7 8 9
|
3eqtr4g |
|- ( ( A e. V /\ B e. W ) -> ran ( { <. A , C >. } u. { <. B , D >. } ) = { C , D } ) |
11 |
2 10
|
eqtrid |
|- ( ( A e. V /\ B e. W ) -> ran { <. A , C >. , <. B , D >. } = { C , D } ) |