Metamath Proof Explorer


Theorem rnresun

Description: Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion rnresun
|- ran ( F |` ( A u. B ) ) = ( ran ( F |` A ) u. ran ( F |` B ) )

Proof

Step Hyp Ref Expression
1 resundi
 |-  ( F |` ( A u. B ) ) = ( ( F |` A ) u. ( F |` B ) )
2 1 rneqi
 |-  ran ( F |` ( A u. B ) ) = ran ( ( F |` A ) u. ( F |` B ) )
3 rnun
 |-  ran ( ( F |` A ) u. ( F |` B ) ) = ( ran ( F |` A ) u. ran ( F |` B ) )
4 2 3 eqtri
 |-  ran ( F |` ( A u. B ) ) = ( ran ( F |` A ) u. ran ( F |` B ) )