| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 2 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
| 3 |
1 2
|
rhmf |
|- ( F e. ( M RingHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 4 |
3
|
ffnd |
|- ( F e. ( M RingHom N ) -> F Fn ( Base ` M ) ) |
| 5 |
|
fnima |
|- ( F Fn ( Base ` M ) -> ( F " ( Base ` M ) ) = ran F ) |
| 6 |
4 5
|
syl |
|- ( F e. ( M RingHom N ) -> ( F " ( Base ` M ) ) = ran F ) |
| 7 |
|
rhmrcl1 |
|- ( F e. ( M RingHom N ) -> M e. Ring ) |
| 8 |
1
|
subrgid |
|- ( M e. Ring -> ( Base ` M ) e. ( SubRing ` M ) ) |
| 9 |
7 8
|
syl |
|- ( F e. ( M RingHom N ) -> ( Base ` M ) e. ( SubRing ` M ) ) |
| 10 |
|
rhmima |
|- ( ( F e. ( M RingHom N ) /\ ( Base ` M ) e. ( SubRing ` M ) ) -> ( F " ( Base ` M ) ) e. ( SubRing ` N ) ) |
| 11 |
9 10
|
mpdan |
|- ( F e. ( M RingHom N ) -> ( F " ( Base ` M ) ) e. ( SubRing ` N ) ) |
| 12 |
6 11
|
eqeltrrd |
|- ( F e. ( M RingHom N ) -> ran F e. ( SubRing ` N ) ) |