Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
|- ( F " ( Base ` M ) ) = ran ( F |` ( Base ` M ) ) |
2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
3 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
4 |
2 3
|
rhmf |
|- ( F e. ( M RingHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
5 |
4
|
ffnd |
|- ( F e. ( M RingHom N ) -> F Fn ( Base ` M ) ) |
6 |
|
fnresdm |
|- ( F Fn ( Base ` M ) -> ( F |` ( Base ` M ) ) = F ) |
7 |
5 6
|
syl |
|- ( F e. ( M RingHom N ) -> ( F |` ( Base ` M ) ) = F ) |
8 |
7
|
rneqd |
|- ( F e. ( M RingHom N ) -> ran ( F |` ( Base ` M ) ) = ran F ) |
9 |
1 8
|
eqtr2id |
|- ( F e. ( M RingHom N ) -> ran F = ( F " ( Base ` M ) ) ) |
10 |
|
rhmrcl1 |
|- ( F e. ( M RingHom N ) -> M e. Ring ) |
11 |
2
|
subrgid |
|- ( M e. Ring -> ( Base ` M ) e. ( SubRing ` M ) ) |
12 |
10 11
|
syl |
|- ( F e. ( M RingHom N ) -> ( Base ` M ) e. ( SubRing ` M ) ) |
13 |
|
rhmima |
|- ( ( F e. ( M RingHom N ) /\ ( Base ` M ) e. ( SubRing ` M ) ) -> ( F " ( Base ` M ) ) e. ( SubRing ` N ) ) |
14 |
12 13
|
mpdan |
|- ( F e. ( M RingHom N ) -> ( F " ( Base ` M ) ) e. ( SubRing ` N ) ) |
15 |
9 14
|
eqeltrd |
|- ( F e. ( M RingHom N ) -> ran F e. ( SubRing ` N ) ) |