Metamath Proof Explorer


Theorem rnsnop

Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis cnvsn.1
|- A e. _V
Assertion rnsnop
|- ran { <. A , B >. } = { B }

Proof

Step Hyp Ref Expression
1 cnvsn.1
 |-  A e. _V
2 rnsnopg
 |-  ( A e. _V -> ran { <. A , B >. } = { B } )
3 1 2 ax-mp
 |-  ran { <. A , B >. } = { B }