Metamath Proof Explorer


Theorem rnun

Description: Distributive law for range over union. Theorem 8 of Suppes p. 60. (Contributed by NM, 24-Mar-1998)

Ref Expression
Assertion rnun
|- ran ( A u. B ) = ( ran A u. ran B )

Proof

Step Hyp Ref Expression
1 cnvun
 |-  `' ( A u. B ) = ( `' A u. `' B )
2 1 dmeqi
 |-  dom `' ( A u. B ) = dom ( `' A u. `' B )
3 dmun
 |-  dom ( `' A u. `' B ) = ( dom `' A u. dom `' B )
4 2 3 eqtri
 |-  dom `' ( A u. B ) = ( dom `' A u. dom `' B )
5 df-rn
 |-  ran ( A u. B ) = dom `' ( A u. B )
6 df-rn
 |-  ran A = dom `' A
7 df-rn
 |-  ran B = dom `' B
8 6 7 uneq12i
 |-  ( ran A u. ran B ) = ( dom `' A u. dom `' B )
9 4 5 8 3eqtr4i
 |-  ran ( A u. B ) = ( ran A u. ran B )