| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rnxrnres | 
							 |-  ran ( R |X. ( _I |` A ) ) = { <. x , y >. | E. u e. A ( u R x /\ u _I y ) } | 
						
						
							| 2 | 
							
								
							 | 
							ideqg | 
							 |-  ( y e. _V -> ( u _I y <-> u = y ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							elv | 
							 |-  ( u _I y <-> u = y )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi1ci | 
							 |-  ( ( u R x /\ u _I y ) <-> ( u = y /\ u R x ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rexbii | 
							 |-  ( E. u e. A ( u R x /\ u _I y ) <-> E. u e. A ( u = y /\ u R x ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							opabbii | 
							 |-  { <. x , y >. | E. u e. A ( u R x /\ u _I y ) } = { <. x , y >. | E. u e. A ( u = y /\ u R x ) } | 
						
						
							| 7 | 
							
								1 6
							 | 
							eqtri | 
							 |-  ran ( R |X. ( _I |` A ) ) = { <. x , y >. | E. u e. A ( u = y /\ u R x ) } |