| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rnxrn | 
							 |-  ran ( R |X. ( S |` A ) ) = { <. x , y >. | E. u ( u R x /\ u ( S |` A ) y ) } | 
						
						
							| 2 | 
							
								
							 | 
							brres | 
							 |-  ( y e. _V -> ( u ( S |` A ) y <-> ( u e. A /\ u S y ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							elv | 
							 |-  ( u ( S |` A ) y <-> ( u e. A /\ u S y ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi2i | 
							 |-  ( ( u R x /\ u ( S |` A ) y ) <-> ( u R x /\ ( u e. A /\ u S y ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							an12 | 
							 |-  ( ( u e. A /\ ( u R x /\ u S y ) ) <-> ( u R x /\ ( u e. A /\ u S y ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							bitr4i | 
							 |-  ( ( u R x /\ u ( S |` A ) y ) <-> ( u e. A /\ ( u R x /\ u S y ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbii | 
							 |-  ( E. u ( u R x /\ u ( S |` A ) y ) <-> E. u ( u e. A /\ ( u R x /\ u S y ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-rex | 
							 |-  ( E. u e. A ( u R x /\ u S y ) <-> E. u ( u e. A /\ ( u R x /\ u S y ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							bitr4i | 
							 |-  ( E. u ( u R x /\ u ( S |` A ) y ) <-> E. u e. A ( u R x /\ u S y ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							opabbii | 
							 |-  { <. x , y >. | E. u ( u R x /\ u ( S |` A ) y ) } = { <. x , y >. | E. u e. A ( u R x /\ u S y ) } | 
						
						
							| 11 | 
							
								1 10
							 | 
							eqtri | 
							 |-  ran ( R |X. ( S |` A ) ) = { <. x , y >. | E. u e. A ( u R x /\ u S y ) } |