Step |
Hyp |
Ref |
Expression |
1 |
|
rolle.a |
|- ( ph -> A e. RR ) |
2 |
|
rolle.b |
|- ( ph -> B e. RR ) |
3 |
|
rolle.lt |
|- ( ph -> A < B ) |
4 |
|
rolle.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
5 |
|
rolle.d |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
6 |
|
rolle.r |
|- ( ph -> A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` U ) ) |
7 |
|
rolle.u |
|- ( ph -> U e. ( A [,] B ) ) |
8 |
|
rolle.n |
|- ( ph -> -. U e. { A , B } ) |
9 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
10 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
11 |
1 2 3
|
ltled |
|- ( ph -> A <_ B ) |
12 |
|
prunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ph -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
14 |
7 13
|
eleqtrrd |
|- ( ph -> U e. ( ( A (,) B ) u. { A , B } ) ) |
15 |
|
elun |
|- ( U e. ( ( A (,) B ) u. { A , B } ) <-> ( U e. ( A (,) B ) \/ U e. { A , B } ) ) |
16 |
14 15
|
sylib |
|- ( ph -> ( U e. ( A (,) B ) \/ U e. { A , B } ) ) |
17 |
16
|
ord |
|- ( ph -> ( -. U e. ( A (,) B ) -> U e. { A , B } ) ) |
18 |
8 17
|
mt3d |
|- ( ph -> U e. ( A (,) B ) ) |
19 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
20 |
4 19
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
21 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
22 |
1 2 21
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
23 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
24 |
23
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
25 |
18 5
|
eleqtrrd |
|- ( ph -> U e. dom ( RR _D F ) ) |
26 |
|
ssralv |
|- ( ( A (,) B ) C_ ( A [,] B ) -> ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` U ) -> A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) ) ) |
27 |
24 6 26
|
sylc |
|- ( ph -> A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) ) |
28 |
20 22 18 24 25 27
|
dvferm |
|- ( ph -> ( ( RR _D F ) ` U ) = 0 ) |
29 |
|
fveqeq2 |
|- ( x = U -> ( ( ( RR _D F ) ` x ) = 0 <-> ( ( RR _D F ) ` U ) = 0 ) ) |
30 |
29
|
rspcev |
|- ( ( U e. ( A (,) B ) /\ ( ( RR _D F ) ` U ) = 0 ) -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |
31 |
18 28 30
|
syl2anc |
|- ( ph -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = 0 ) |