| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 2 |  | 2re |  |-  2 e. RR | 
						
							| 3 |  | simpl |  |-  ( ( N e. NN /\ K e. ZZ ) -> N e. NN ) | 
						
							| 4 |  | nndivre |  |-  ( ( 2 e. RR /\ N e. NN ) -> ( 2 / N ) e. RR ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 2 / N ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 2 / N ) e. CC ) | 
						
							| 7 |  | cxpcl |  |-  ( ( -u 1 e. CC /\ ( 2 / N ) e. CC ) -> ( -u 1 ^c ( 2 / N ) ) e. CC ) | 
						
							| 8 | 1 6 7 | sylancr |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( -u 1 ^c ( 2 / N ) ) e. CC ) | 
						
							| 9 | 1 | a1i |  |-  ( ( N e. NN /\ K e. ZZ ) -> -u 1 e. CC ) | 
						
							| 10 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 11 | 10 | a1i |  |-  ( ( N e. NN /\ K e. ZZ ) -> -u 1 =/= 0 ) | 
						
							| 12 | 9 11 6 | cxpne0d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( -u 1 ^c ( 2 / N ) ) =/= 0 ) | 
						
							| 13 |  | simpr |  |-  ( ( N e. NN /\ K e. ZZ ) -> K e. ZZ ) | 
						
							| 14 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 15 | 14 | adantr |  |-  ( ( N e. NN /\ K e. ZZ ) -> N e. ZZ ) | 
						
							| 16 | 8 12 13 15 | expsubd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( -u 1 ^c ( 2 / N ) ) ^ ( N - K ) ) = ( ( ( -u 1 ^c ( 2 / N ) ) ^ N ) / ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ) | 
						
							| 17 |  | root1id |  |-  ( N e. NN -> ( ( -u 1 ^c ( 2 / N ) ) ^ N ) = 1 ) | 
						
							| 18 | 17 | adantr |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( -u 1 ^c ( 2 / N ) ) ^ N ) = 1 ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( -u 1 ^c ( 2 / N ) ) ^ N ) / ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) = ( 1 / ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ) | 
						
							| 20 | 8 12 13 | expclzd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( -u 1 ^c ( 2 / N ) ) ^ K ) e. CC ) | 
						
							| 21 | 8 12 13 | expne0d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( -u 1 ^c ( 2 / N ) ) ^ K ) =/= 0 ) | 
						
							| 22 |  | recval |  |-  ( ( ( ( -u 1 ^c ( 2 / N ) ) ^ K ) e. CC /\ ( ( -u 1 ^c ( 2 / N ) ) ^ K ) =/= 0 ) -> ( 1 / ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) = ( ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) / ( ( abs ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ^ 2 ) ) ) | 
						
							| 23 | 20 21 22 | syl2anc |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 1 / ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) = ( ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) / ( ( abs ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ^ 2 ) ) ) | 
						
							| 24 |  | absexpz |  |-  ( ( ( -u 1 ^c ( 2 / N ) ) e. CC /\ ( -u 1 ^c ( 2 / N ) ) =/= 0 /\ K e. ZZ ) -> ( abs ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) = ( ( abs ` ( -u 1 ^c ( 2 / N ) ) ) ^ K ) ) | 
						
							| 25 | 8 12 13 24 | syl3anc |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( abs ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) = ( ( abs ` ( -u 1 ^c ( 2 / N ) ) ) ^ K ) ) | 
						
							| 26 |  | abscxp2 |  |-  ( ( -u 1 e. CC /\ ( 2 / N ) e. RR ) -> ( abs ` ( -u 1 ^c ( 2 / N ) ) ) = ( ( abs ` -u 1 ) ^c ( 2 / N ) ) ) | 
						
							| 27 | 1 5 26 | sylancr |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( abs ` ( -u 1 ^c ( 2 / N ) ) ) = ( ( abs ` -u 1 ) ^c ( 2 / N ) ) ) | 
						
							| 28 |  | ax-1cn |  |-  1 e. CC | 
						
							| 29 | 28 | absnegi |  |-  ( abs ` -u 1 ) = ( abs ` 1 ) | 
						
							| 30 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 31 | 29 30 | eqtri |  |-  ( abs ` -u 1 ) = 1 | 
						
							| 32 | 31 | oveq1i |  |-  ( ( abs ` -u 1 ) ^c ( 2 / N ) ) = ( 1 ^c ( 2 / N ) ) | 
						
							| 33 | 27 32 | eqtrdi |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( abs ` ( -u 1 ^c ( 2 / N ) ) ) = ( 1 ^c ( 2 / N ) ) ) | 
						
							| 34 | 6 | 1cxpd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 1 ^c ( 2 / N ) ) = 1 ) | 
						
							| 35 | 33 34 | eqtrd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( abs ` ( -u 1 ^c ( 2 / N ) ) ) = 1 ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( abs ` ( -u 1 ^c ( 2 / N ) ) ) ^ K ) = ( 1 ^ K ) ) | 
						
							| 37 |  | 1exp |  |-  ( K e. ZZ -> ( 1 ^ K ) = 1 ) | 
						
							| 38 | 37 | adantl |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 1 ^ K ) = 1 ) | 
						
							| 39 | 25 36 38 | 3eqtrd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( abs ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) = 1 ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( abs ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 41 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 42 | 40 41 | eqtrdi |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( abs ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ^ 2 ) = 1 ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) / ( ( abs ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ^ 2 ) ) = ( ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) / 1 ) ) | 
						
							| 44 | 20 | cjcld |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) e. CC ) | 
						
							| 45 | 44 | div1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) / 1 ) = ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ) | 
						
							| 46 | 23 43 45 | 3eqtrd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 1 / ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) = ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) ) | 
						
							| 47 | 16 19 46 | 3eqtrrd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( * ` ( ( -u 1 ^c ( 2 / N ) ) ^ K ) ) = ( ( -u 1 ^c ( 2 / N ) ) ^ ( N - K ) ) ) |