| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 |  | simpl |  |-  ( ( N e. NN /\ K e. ZZ ) -> N e. NN ) | 
						
							| 3 |  | nndivre |  |-  ( ( 2 e. RR /\ N e. NN ) -> ( 2 / N ) e. RR ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 2 / N ) e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 2 / N ) e. CC ) | 
						
							| 6 |  | ax-icn |  |-  _i e. CC | 
						
							| 7 |  | picn |  |-  _pi e. CC | 
						
							| 8 | 6 7 | mulcli |  |-  ( _i x. _pi ) e. CC | 
						
							| 9 | 8 | a1i |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( _i x. _pi ) e. CC ) | 
						
							| 10 | 5 9 | mulcld |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( 2 / N ) x. ( _i x. _pi ) ) e. CC ) | 
						
							| 11 |  | efexp |  |-  ( ( ( ( 2 / N ) x. ( _i x. _pi ) ) e. CC /\ K e. ZZ ) -> ( exp ` ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) = ( ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) ^ K ) ) | 
						
							| 12 | 10 11 | sylancom |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( exp ` ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) = ( ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) ^ K ) ) | 
						
							| 13 |  | zcn |  |-  ( K e. ZZ -> K e. CC ) | 
						
							| 14 | 13 | adantl |  |-  ( ( N e. NN /\ K e. ZZ ) -> K e. CC ) | 
						
							| 15 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( N e. NN /\ K e. ZZ ) -> N e. CC ) | 
						
							| 17 |  | 2cn |  |-  2 e. CC | 
						
							| 18 | 17 | a1i |  |-  ( ( N e. NN /\ K e. ZZ ) -> 2 e. CC ) | 
						
							| 19 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 20 | 19 | adantr |  |-  ( ( N e. NN /\ K e. ZZ ) -> N =/= 0 ) | 
						
							| 21 | 14 16 18 20 | div32d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( K / N ) x. 2 ) = ( K x. ( 2 / N ) ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( K / N ) x. 2 ) x. ( _i x. _pi ) ) = ( ( K x. ( 2 / N ) ) x. ( _i x. _pi ) ) ) | 
						
							| 23 | 14 16 20 | divcld |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( K / N ) e. CC ) | 
						
							| 24 | 23 18 9 | mulassd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( K / N ) x. 2 ) x. ( _i x. _pi ) ) = ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) | 
						
							| 25 | 14 5 9 | mulassd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( K x. ( 2 / N ) ) x. ( _i x. _pi ) ) = ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) | 
						
							| 26 | 22 24 25 | 3eqtr3d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) = ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) = ( exp ` ( K x. ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) ) | 
						
							| 28 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 29 | 28 | a1i |  |-  ( ( N e. NN /\ K e. ZZ ) -> -u 1 e. CC ) | 
						
							| 30 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 31 | 30 | a1i |  |-  ( ( N e. NN /\ K e. ZZ ) -> -u 1 =/= 0 ) | 
						
							| 32 | 29 31 5 | cxpefd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( -u 1 ^c ( 2 / N ) ) = ( exp ` ( ( 2 / N ) x. ( log ` -u 1 ) ) ) ) | 
						
							| 33 |  | logm1 |  |-  ( log ` -u 1 ) = ( _i x. _pi ) | 
						
							| 34 | 33 | oveq2i |  |-  ( ( 2 / N ) x. ( log ` -u 1 ) ) = ( ( 2 / N ) x. ( _i x. _pi ) ) | 
						
							| 35 | 34 | fveq2i |  |-  ( exp ` ( ( 2 / N ) x. ( log ` -u 1 ) ) ) = ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) | 
						
							| 36 | 32 35 | eqtrdi |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( -u 1 ^c ( 2 / N ) ) = ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( -u 1 ^c ( 2 / N ) ) ^ K ) = ( ( exp ` ( ( 2 / N ) x. ( _i x. _pi ) ) ) ^ K ) ) | 
						
							| 38 | 12 27 37 | 3eqtr4rd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( -u 1 ^c ( 2 / N ) ) ^ K ) = ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( -u 1 ^c ( 2 / N ) ) ^ K ) = 1 <-> ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) = 1 ) ) | 
						
							| 40 | 17 8 | mulcli |  |-  ( 2 x. ( _i x. _pi ) ) e. CC | 
						
							| 41 |  | mulcl |  |-  ( ( ( K / N ) e. CC /\ ( 2 x. ( _i x. _pi ) ) e. CC ) -> ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) e. CC ) | 
						
							| 42 | 23 40 41 | sylancl |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) e. CC ) | 
						
							| 43 |  | efeq1 |  |-  ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) e. CC -> ( ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) = 1 <-> ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( exp ` ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) = 1 <-> ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) | 
						
							| 45 | 6 17 7 | mul12i |  |-  ( _i x. ( 2 x. _pi ) ) = ( 2 x. ( _i x. _pi ) ) | 
						
							| 46 | 45 | oveq2i |  |-  ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( 2 x. ( _i x. _pi ) ) ) | 
						
							| 47 | 40 | a1i |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 2 x. ( _i x. _pi ) ) e. CC ) | 
						
							| 48 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 49 |  | ine0 |  |-  _i =/= 0 | 
						
							| 50 |  | pire |  |-  _pi e. RR | 
						
							| 51 |  | pipos |  |-  0 < _pi | 
						
							| 52 | 50 51 | gt0ne0ii |  |-  _pi =/= 0 | 
						
							| 53 | 6 7 49 52 | mulne0i |  |-  ( _i x. _pi ) =/= 0 | 
						
							| 54 | 17 8 48 53 | mulne0i |  |-  ( 2 x. ( _i x. _pi ) ) =/= 0 | 
						
							| 55 | 54 | a1i |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( 2 x. ( _i x. _pi ) ) =/= 0 ) | 
						
							| 56 | 23 47 55 | divcan4d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( 2 x. ( _i x. _pi ) ) ) = ( K / N ) ) | 
						
							| 57 | 46 56 | eqtrid |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( K / N ) ) | 
						
							| 58 | 57 | eleq1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ <-> ( K / N ) e. ZZ ) ) | 
						
							| 59 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 60 | 59 | adantr |  |-  ( ( N e. NN /\ K e. ZZ ) -> N e. ZZ ) | 
						
							| 61 |  | simpr |  |-  ( ( N e. NN /\ K e. ZZ ) -> K e. ZZ ) | 
						
							| 62 |  | dvdsval2 |  |-  ( ( N e. ZZ /\ N =/= 0 /\ K e. ZZ ) -> ( N || K <-> ( K / N ) e. ZZ ) ) | 
						
							| 63 | 60 20 61 62 | syl3anc |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( N || K <-> ( K / N ) e. ZZ ) ) | 
						
							| 64 | 58 63 | bitr4d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( ( K / N ) x. ( 2 x. ( _i x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ <-> N || K ) ) | 
						
							| 65 | 39 44 64 | 3bitrd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( -u 1 ^c ( 2 / N ) ) ^ K ) = 1 <-> N || K ) ) |