Step |
Hyp |
Ref |
Expression |
1 |
|
rprege0 |
|- ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) |
2 |
|
recxpcl |
|- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( A ^c B ) e. RR ) |
3 |
2
|
3expa |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR ) -> ( A ^c B ) e. RR ) |
4 |
1 3
|
sylan |
|- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR ) |
5 |
|
id |
|- ( B e. RR -> B e. RR ) |
6 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
7 |
|
remulcl |
|- ( ( B e. RR /\ ( log ` A ) e. RR ) -> ( B x. ( log ` A ) ) e. RR ) |
8 |
5 6 7
|
syl2anr |
|- ( ( A e. RR+ /\ B e. RR ) -> ( B x. ( log ` A ) ) e. RR ) |
9 |
|
efgt0 |
|- ( ( B x. ( log ` A ) ) e. RR -> 0 < ( exp ` ( B x. ( log ` A ) ) ) ) |
10 |
8 9
|
syl |
|- ( ( A e. RR+ /\ B e. RR ) -> 0 < ( exp ` ( B x. ( log ` A ) ) ) ) |
11 |
|
rpcnne0 |
|- ( A e. RR+ -> ( A e. CC /\ A =/= 0 ) ) |
12 |
|
recn |
|- ( B e. RR -> B e. CC ) |
13 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
14 |
13
|
3expa |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
15 |
11 12 14
|
syl2an |
|- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
16 |
10 15
|
breqtrrd |
|- ( ( A e. RR+ /\ B e. RR ) -> 0 < ( A ^c B ) ) |
17 |
4 16
|
elrpd |
|- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) |