| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
| 2 |
|
rprene0 |
|- ( B e. RR+ -> ( B e. RR /\ B =/= 0 ) ) |
| 3 |
|
redivcl |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) |
| 4 |
3
|
3expb |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( A / B ) e. RR ) |
| 5 |
1 2 4
|
syl2an |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 6 |
|
elrp |
|- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
| 7 |
|
elrp |
|- ( B e. RR+ <-> ( B e. RR /\ 0 < B ) ) |
| 8 |
|
divgt0 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A / B ) ) |
| 9 |
6 7 8
|
syl2anb |
|- ( ( A e. RR+ /\ B e. RR+ ) -> 0 < ( A / B ) ) |
| 10 |
|
elrp |
|- ( ( A / B ) e. RR+ <-> ( ( A / B ) e. RR /\ 0 < ( A / B ) ) ) |
| 11 |
5 9 10
|
sylanbrc |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( A / B ) e. RR+ ) |