Metamath Proof Explorer


Theorem rpdp2cl

Description: Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses rpdp2cl.a
|- A e. NN0
rpdp2cl.b
|- B e. RR+
Assertion rpdp2cl
|- _ A B e. RR+

Proof

Step Hyp Ref Expression
1 rpdp2cl.a
 |-  A e. NN0
2 rpdp2cl.b
 |-  B e. RR+
3 df-dp2
 |-  _ A B = ( A + ( B / ; 1 0 ) )
4 1 nn0rei
 |-  A e. RR
5 rpssre
 |-  RR+ C_ RR
6 10nn
 |-  ; 1 0 e. NN
7 nnrp
 |-  ( ; 1 0 e. NN -> ; 1 0 e. RR+ )
8 6 7 ax-mp
 |-  ; 1 0 e. RR+
9 rpdivcl
 |-  ( ( B e. RR+ /\ ; 1 0 e. RR+ ) -> ( B / ; 1 0 ) e. RR+ )
10 2 8 9 mp2an
 |-  ( B / ; 1 0 ) e. RR+
11 5 10 sselii
 |-  ( B / ; 1 0 ) e. RR
12 readdcl
 |-  ( ( A e. RR /\ ( B / ; 1 0 ) e. RR ) -> ( A + ( B / ; 1 0 ) ) e. RR )
13 4 11 12 mp2an
 |-  ( A + ( B / ; 1 0 ) ) e. RR
14 4 11 pm3.2i
 |-  ( A e. RR /\ ( B / ; 1 0 ) e. RR )
15 1 nn0ge0i
 |-  0 <_ A
16 rpgt0
 |-  ( ( B / ; 1 0 ) e. RR+ -> 0 < ( B / ; 1 0 ) )
17 10 16 ax-mp
 |-  0 < ( B / ; 1 0 )
18 15 17 pm3.2i
 |-  ( 0 <_ A /\ 0 < ( B / ; 1 0 ) )
19 addgegt0
 |-  ( ( ( A e. RR /\ ( B / ; 1 0 ) e. RR ) /\ ( 0 <_ A /\ 0 < ( B / ; 1 0 ) ) ) -> 0 < ( A + ( B / ; 1 0 ) ) )
20 14 18 19 mp2an
 |-  0 < ( A + ( B / ; 1 0 ) )
21 elrp
 |-  ( ( A + ( B / ; 1 0 ) ) e. RR+ <-> ( ( A + ( B / ; 1 0 ) ) e. RR /\ 0 < ( A + ( B / ; 1 0 ) ) ) )
22 13 20 21 mpbir2an
 |-  ( A + ( B / ; 1 0 ) ) e. RR+
23 3 22 eqeltri
 |-  _ A B e. RR+