Step |
Hyp |
Ref |
Expression |
1 |
|
rpdp2cl.a |
|- A e. NN0 |
2 |
|
rpdp2cl.b |
|- B e. RR+ |
3 |
|
df-dp2 |
|- _ A B = ( A + ( B / ; 1 0 ) ) |
4 |
1
|
nn0rei |
|- A e. RR |
5 |
|
rpssre |
|- RR+ C_ RR |
6 |
|
10nn |
|- ; 1 0 e. NN |
7 |
|
nnrp |
|- ( ; 1 0 e. NN -> ; 1 0 e. RR+ ) |
8 |
6 7
|
ax-mp |
|- ; 1 0 e. RR+ |
9 |
|
rpdivcl |
|- ( ( B e. RR+ /\ ; 1 0 e. RR+ ) -> ( B / ; 1 0 ) e. RR+ ) |
10 |
2 8 9
|
mp2an |
|- ( B / ; 1 0 ) e. RR+ |
11 |
5 10
|
sselii |
|- ( B / ; 1 0 ) e. RR |
12 |
|
readdcl |
|- ( ( A e. RR /\ ( B / ; 1 0 ) e. RR ) -> ( A + ( B / ; 1 0 ) ) e. RR ) |
13 |
4 11 12
|
mp2an |
|- ( A + ( B / ; 1 0 ) ) e. RR |
14 |
4 11
|
pm3.2i |
|- ( A e. RR /\ ( B / ; 1 0 ) e. RR ) |
15 |
1
|
nn0ge0i |
|- 0 <_ A |
16 |
|
rpgt0 |
|- ( ( B / ; 1 0 ) e. RR+ -> 0 < ( B / ; 1 0 ) ) |
17 |
10 16
|
ax-mp |
|- 0 < ( B / ; 1 0 ) |
18 |
15 17
|
pm3.2i |
|- ( 0 <_ A /\ 0 < ( B / ; 1 0 ) ) |
19 |
|
addgegt0 |
|- ( ( ( A e. RR /\ ( B / ; 1 0 ) e. RR ) /\ ( 0 <_ A /\ 0 < ( B / ; 1 0 ) ) ) -> 0 < ( A + ( B / ; 1 0 ) ) ) |
20 |
14 18 19
|
mp2an |
|- 0 < ( A + ( B / ; 1 0 ) ) |
21 |
|
elrp |
|- ( ( A + ( B / ; 1 0 ) ) e. RR+ <-> ( ( A + ( B / ; 1 0 ) ) e. RR /\ 0 < ( A + ( B / ; 1 0 ) ) ) ) |
22 |
13 20 21
|
mpbir2an |
|- ( A + ( B / ; 1 0 ) ) e. RR+ |
23 |
3 22
|
eqeltri |
|- _ A B e. RR+ |