Metamath Proof Explorer


Theorem rpdpcl

Description: Closure of the decimal point in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses rpdpcl.a
|- A e. NN0
rpdpcl.b
|- B e. RR+
Assertion rpdpcl
|- ( A . B ) e. RR+

Proof

Step Hyp Ref Expression
1 rpdpcl.a
 |-  A e. NN0
2 rpdpcl.b
 |-  B e. RR+
3 1 2 dpval3rp
 |-  ( A . B ) = _ A B
4 1 2 rpdp2cl
 |-  _ A B e. RR+
5 3 4 eqeltri
 |-  ( A . B ) e. RR+