Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> K e. ZZ ) |
2 |
|
simpl2 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> M e. ZZ ) |
3 |
|
gcddvds |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
4 |
1 2 3
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
5 |
4
|
simpld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || K ) |
6 |
|
ax-1ne0 |
|- 1 =/= 0 |
7 |
|
simprl |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd N ) = 1 ) |
8 |
7
|
neeq1d |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd N ) =/= 0 <-> 1 =/= 0 ) ) |
9 |
6 8
|
mpbiri |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd N ) =/= 0 ) |
10 |
9
|
neneqd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K gcd N ) = 0 ) |
11 |
|
simprl |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> K = 0 ) |
12 |
|
simprr |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> M = 0 ) |
13 |
|
simplrr |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> M || N ) |
14 |
12 13
|
eqbrtrrd |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> 0 || N ) |
15 |
|
simpll3 |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> N e. ZZ ) |
16 |
|
0dvds |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
17 |
15 16
|
syl |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> ( 0 || N <-> N = 0 ) ) |
18 |
14 17
|
mpbid |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> N = 0 ) |
19 |
11 18
|
jca |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> ( K = 0 /\ N = 0 ) ) |
20 |
19
|
ex |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K = 0 /\ M = 0 ) -> ( K = 0 /\ N = 0 ) ) ) |
21 |
|
simpl3 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> N e. ZZ ) |
22 |
|
gcdeq0 |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) = 0 <-> ( K = 0 /\ N = 0 ) ) ) |
23 |
1 21 22
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd N ) = 0 <-> ( K = 0 /\ N = 0 ) ) ) |
24 |
20 23
|
sylibrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K = 0 /\ M = 0 ) -> ( K gcd N ) = 0 ) ) |
25 |
10 24
|
mtod |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K = 0 /\ M = 0 ) ) |
26 |
|
gcdn0cl |
|- ( ( ( K e. ZZ /\ M e. ZZ ) /\ -. ( K = 0 /\ M = 0 ) ) -> ( K gcd M ) e. NN ) |
27 |
1 2 25 26
|
syl21anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) e. NN ) |
28 |
27
|
nnzd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) e. ZZ ) |
29 |
4
|
simprd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || M ) |
30 |
|
simprr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> M || N ) |
31 |
28 2 21 29 30
|
dvdstrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || N ) |
32 |
10 23
|
mtbid |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K = 0 /\ N = 0 ) ) |
33 |
|
dvdslegcd |
|- ( ( ( ( K gcd M ) e. ZZ /\ K e. ZZ /\ N e. ZZ ) /\ -. ( K = 0 /\ N = 0 ) ) -> ( ( ( K gcd M ) || K /\ ( K gcd M ) || N ) -> ( K gcd M ) <_ ( K gcd N ) ) ) |
34 |
28 1 21 32 33
|
syl31anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( ( K gcd M ) || K /\ ( K gcd M ) || N ) -> ( K gcd M ) <_ ( K gcd N ) ) ) |
35 |
5 31 34
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) <_ ( K gcd N ) ) |
36 |
35 7
|
breqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) <_ 1 ) |
37 |
|
nnle1eq1 |
|- ( ( K gcd M ) e. NN -> ( ( K gcd M ) <_ 1 <-> ( K gcd M ) = 1 ) ) |
38 |
27 37
|
syl |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd M ) <_ 1 <-> ( K gcd M ) = 1 ) ) |
39 |
36 38
|
mpbid |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) = 1 ) |