| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> K e. ZZ ) |
| 2 |
|
simpl2 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> M e. ZZ ) |
| 3 |
|
gcddvds |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
| 4 |
1 2 3
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
| 5 |
4
|
simpld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || K ) |
| 6 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 7 |
|
simprl |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd N ) = 1 ) |
| 8 |
7
|
neeq1d |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd N ) =/= 0 <-> 1 =/= 0 ) ) |
| 9 |
6 8
|
mpbiri |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd N ) =/= 0 ) |
| 10 |
9
|
neneqd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K gcd N ) = 0 ) |
| 11 |
|
simprl |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> K = 0 ) |
| 12 |
|
simprr |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> M = 0 ) |
| 13 |
|
simplrr |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> M || N ) |
| 14 |
12 13
|
eqbrtrrd |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> 0 || N ) |
| 15 |
|
simpll3 |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> N e. ZZ ) |
| 16 |
|
0dvds |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
| 17 |
15 16
|
syl |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> ( 0 || N <-> N = 0 ) ) |
| 18 |
14 17
|
mpbid |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> N = 0 ) |
| 19 |
11 18
|
jca |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) /\ ( K = 0 /\ M = 0 ) ) -> ( K = 0 /\ N = 0 ) ) |
| 20 |
19
|
ex |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K = 0 /\ M = 0 ) -> ( K = 0 /\ N = 0 ) ) ) |
| 21 |
|
simpl3 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> N e. ZZ ) |
| 22 |
|
gcdeq0 |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) = 0 <-> ( K = 0 /\ N = 0 ) ) ) |
| 23 |
1 21 22
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd N ) = 0 <-> ( K = 0 /\ N = 0 ) ) ) |
| 24 |
20 23
|
sylibrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K = 0 /\ M = 0 ) -> ( K gcd N ) = 0 ) ) |
| 25 |
10 24
|
mtod |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K = 0 /\ M = 0 ) ) |
| 26 |
|
gcdn0cl |
|- ( ( ( K e. ZZ /\ M e. ZZ ) /\ -. ( K = 0 /\ M = 0 ) ) -> ( K gcd M ) e. NN ) |
| 27 |
1 2 25 26
|
syl21anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) e. NN ) |
| 28 |
27
|
nnzd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) e. ZZ ) |
| 29 |
4
|
simprd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || M ) |
| 30 |
|
simprr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> M || N ) |
| 31 |
28 2 21 29 30
|
dvdstrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) || N ) |
| 32 |
10 23
|
mtbid |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> -. ( K = 0 /\ N = 0 ) ) |
| 33 |
|
dvdslegcd |
|- ( ( ( ( K gcd M ) e. ZZ /\ K e. ZZ /\ N e. ZZ ) /\ -. ( K = 0 /\ N = 0 ) ) -> ( ( ( K gcd M ) || K /\ ( K gcd M ) || N ) -> ( K gcd M ) <_ ( K gcd N ) ) ) |
| 34 |
28 1 21 32 33
|
syl31anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( ( K gcd M ) || K /\ ( K gcd M ) || N ) -> ( K gcd M ) <_ ( K gcd N ) ) ) |
| 35 |
5 31 34
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) <_ ( K gcd N ) ) |
| 36 |
35 7
|
breqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) <_ 1 ) |
| 37 |
|
nnle1eq1 |
|- ( ( K gcd M ) e. NN -> ( ( K gcd M ) <_ 1 <-> ( K gcd M ) = 1 ) ) |
| 38 |
27 37
|
syl |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( ( K gcd M ) <_ 1 <-> ( K gcd M ) = 1 ) ) |
| 39 |
36 38
|
mpbid |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( ( K gcd N ) = 1 /\ M || N ) ) -> ( K gcd M ) = 1 ) |