Step |
Hyp |
Ref |
Expression |
1 |
|
0exp |
|- ( N e. NN -> ( 0 ^ N ) = 0 ) |
2 |
1
|
oveq1d |
|- ( N e. NN -> ( ( 0 ^ N ) gcd 0 ) = ( 0 gcd 0 ) ) |
3 |
2
|
eqeq1d |
|- ( N e. NN -> ( ( ( 0 ^ N ) gcd 0 ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) |
4 |
|
oveq1 |
|- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
5 |
|
oveq12 |
|- ( ( ( A ^ N ) = ( 0 ^ N ) /\ B = 0 ) -> ( ( A ^ N ) gcd B ) = ( ( 0 ^ N ) gcd 0 ) ) |
6 |
4 5
|
sylan |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A ^ N ) gcd B ) = ( ( 0 ^ N ) gcd 0 ) ) |
7 |
6
|
eqeq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( ( 0 ^ N ) gcd 0 ) = 1 ) ) |
8 |
|
oveq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
9 |
8
|
eqeq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) |
10 |
7 9
|
bibi12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) <-> ( ( ( 0 ^ N ) gcd 0 ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) ) |
11 |
3 10
|
syl5ibrcom |
|- ( N e. NN -> ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
13 |
|
exprmfct |
|- ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( ( A ^ N ) gcd B ) ) |
14 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> A e. ZZ ) |
15 |
|
simpl3 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> N e. NN ) |
16 |
15
|
nnnn0d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> N e. NN0 ) |
17 |
|
zexpcl |
|- ( ( A e. ZZ /\ N e. NN0 ) -> ( A ^ N ) e. ZZ ) |
18 |
14 16 17
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A ^ N ) e. ZZ ) |
19 |
18
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A ^ N ) e. ZZ ) |
20 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> B e. ZZ ) |
21 |
20
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> B e. ZZ ) |
22 |
|
gcddvds |
|- ( ( ( A ^ N ) e. ZZ /\ B e. ZZ ) -> ( ( ( A ^ N ) gcd B ) || ( A ^ N ) /\ ( ( A ^ N ) gcd B ) || B ) ) |
23 |
19 21 22
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( ( A ^ N ) gcd B ) || ( A ^ N ) /\ ( ( A ^ N ) gcd B ) || B ) ) |
24 |
23
|
simpld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) || ( A ^ N ) ) |
25 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
26 |
25
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> p e. ZZ ) |
27 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> -. ( A = 0 /\ B = 0 ) ) |
28 |
14
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> A e. CC ) |
29 |
|
expeq0 |
|- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |
30 |
28 15 29
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |
31 |
30
|
anbi1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) = 0 /\ B = 0 ) <-> ( A = 0 /\ B = 0 ) ) ) |
32 |
27 31
|
mtbird |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> -. ( ( A ^ N ) = 0 /\ B = 0 ) ) |
33 |
|
gcdn0cl |
|- ( ( ( ( A ^ N ) e. ZZ /\ B e. ZZ ) /\ -. ( ( A ^ N ) = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. NN ) |
34 |
18 20 32 33
|
syl21anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. NN ) |
35 |
34
|
nnzd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. ZZ ) |
36 |
35
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) e. ZZ ) |
37 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( ( A ^ N ) gcd B ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
38 |
26 36 19 37
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
39 |
24 38
|
mpan2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || ( A ^ N ) ) ) |
40 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> p e. Prime ) |
41 |
|
simpll1 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> A e. ZZ ) |
42 |
15
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> N e. NN ) |
43 |
|
prmdvdsexp |
|- ( ( p e. Prime /\ A e. ZZ /\ N e. NN ) -> ( p || ( A ^ N ) <-> p || A ) ) |
44 |
40 41 42 43
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A ^ N ) <-> p || A ) ) |
45 |
39 44
|
sylibd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || A ) ) |
46 |
23
|
simprd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) || B ) |
47 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( ( A ^ N ) gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || B ) -> p || B ) ) |
48 |
26 36 21 47
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || B ) -> p || B ) ) |
49 |
46 48
|
mpan2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || B ) ) |
50 |
45 49
|
jcad |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( p || A /\ p || B ) ) ) |
51 |
|
dvdsgcd |
|- ( ( p e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
52 |
26 41 21 51
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
53 |
|
nprmdvds1 |
|- ( p e. Prime -> -. p || 1 ) |
54 |
|
breq2 |
|- ( ( A gcd B ) = 1 -> ( p || ( A gcd B ) <-> p || 1 ) ) |
55 |
54
|
notbid |
|- ( ( A gcd B ) = 1 -> ( -. p || ( A gcd B ) <-> -. p || 1 ) ) |
56 |
53 55
|
syl5ibrcom |
|- ( p e. Prime -> ( ( A gcd B ) = 1 -> -. p || ( A gcd B ) ) ) |
57 |
56
|
necon2ad |
|- ( p e. Prime -> ( p || ( A gcd B ) -> ( A gcd B ) =/= 1 ) ) |
58 |
57
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( A gcd B ) =/= 1 ) ) |
59 |
50 52 58
|
3syld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) =/= 1 ) ) |
60 |
59
|
rexlimdva |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) =/= 1 ) ) |
61 |
|
gcdn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
62 |
61
|
3adantl3 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
63 |
|
eluz2b3 |
|- ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A gcd B ) e. NN /\ ( A gcd B ) =/= 1 ) ) |
64 |
63
|
baib |
|- ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) =/= 1 ) ) |
65 |
62 64
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) =/= 1 ) ) |
66 |
60 65
|
sylibrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
67 |
13 66
|
syl5 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) -> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
68 |
|
exprmfct |
|- ( ( A gcd B ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( A gcd B ) ) |
69 |
62
|
nnzd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. ZZ ) |
70 |
69
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) e. ZZ ) |
71 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
72 |
41 21 71
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
73 |
72
|
simpld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || A ) |
74 |
|
iddvdsexp |
|- ( ( A e. ZZ /\ N e. NN ) -> A || ( A ^ N ) ) |
75 |
41 42 74
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> A || ( A ^ N ) ) |
76 |
70 41 19 73 75
|
dvdstrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || ( A ^ N ) ) |
77 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( A gcd B ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
78 |
26 70 19 77
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
79 |
76 78
|
mpan2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> p || ( A ^ N ) ) ) |
80 |
72
|
simprd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || B ) |
81 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( A gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || B ) -> p || B ) ) |
82 |
26 70 21 81
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || B ) -> p || B ) ) |
83 |
80 82
|
mpan2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> p || B ) ) |
84 |
79 83
|
jcad |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( p || ( A ^ N ) /\ p || B ) ) ) |
85 |
|
dvdsgcd |
|- ( ( p e. ZZ /\ ( A ^ N ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( A ^ N ) /\ p || B ) -> p || ( ( A ^ N ) gcd B ) ) ) |
86 |
26 19 21 85
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A ^ N ) /\ p || B ) -> p || ( ( A ^ N ) gcd B ) ) ) |
87 |
|
breq2 |
|- ( ( ( A ^ N ) gcd B ) = 1 -> ( p || ( ( A ^ N ) gcd B ) <-> p || 1 ) ) |
88 |
87
|
notbid |
|- ( ( ( A ^ N ) gcd B ) = 1 -> ( -. p || ( ( A ^ N ) gcd B ) <-> -. p || 1 ) ) |
89 |
53 88
|
syl5ibrcom |
|- ( p e. Prime -> ( ( ( A ^ N ) gcd B ) = 1 -> -. p || ( ( A ^ N ) gcd B ) ) ) |
90 |
89
|
necon2ad |
|- ( p e. Prime -> ( p || ( ( A ^ N ) gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
91 |
90
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
92 |
84 86 91
|
3syld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
93 |
92
|
rexlimdva |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
94 |
|
eluz2b3 |
|- ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( ( A ^ N ) gcd B ) e. NN /\ ( ( A ^ N ) gcd B ) =/= 1 ) ) |
95 |
94
|
baib |
|- ( ( ( A ^ N ) gcd B ) e. NN -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
96 |
34 95
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
97 |
93 96
|
sylibrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) ) ) |
98 |
68 97
|
syl5 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) -> ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) ) ) |
99 |
67 98
|
impbid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
100 |
99 96 65
|
3bitr3d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) =/= 1 <-> ( A gcd B ) =/= 1 ) ) |
101 |
100
|
necon4bid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |
102 |
101
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( -. ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
103 |
12 102
|
pm2.61d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |