| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpexp1i |  |-  ( ( A e. ZZ /\ B e. ZZ /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) | 
						
							| 2 | 1 | 3adant3r |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) | 
						
							| 3 |  | simp2 |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> B e. ZZ ) | 
						
							| 4 |  | simp1 |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> A e. ZZ ) | 
						
							| 5 |  | simp3l |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> M e. NN0 ) | 
						
							| 6 |  | zexpcl |  |-  ( ( A e. ZZ /\ M e. NN0 ) -> ( A ^ M ) e. ZZ ) | 
						
							| 7 | 4 5 6 | syl2anc |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( A ^ M ) e. ZZ ) | 
						
							| 8 |  | simp3r |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> N e. NN0 ) | 
						
							| 9 |  | rpexp1i |  |-  ( ( B e. ZZ /\ ( A ^ M ) e. ZZ /\ N e. NN0 ) -> ( ( B gcd ( A ^ M ) ) = 1 -> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) | 
						
							| 10 | 3 7 8 9 | syl3anc |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( B gcd ( A ^ M ) ) = 1 -> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) | 
						
							| 11 | 7 3 | gcdcomd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A ^ M ) gcd B ) = ( B gcd ( A ^ M ) ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd B ) = 1 <-> ( B gcd ( A ^ M ) ) = 1 ) ) | 
						
							| 13 |  | zexpcl |  |-  ( ( B e. ZZ /\ N e. NN0 ) -> ( B ^ N ) e. ZZ ) | 
						
							| 14 | 3 8 13 | syl2anc |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( B ^ N ) e. ZZ ) | 
						
							| 15 | 7 14 | gcdcomd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A ^ M ) gcd ( B ^ N ) ) = ( ( B ^ N ) gcd ( A ^ M ) ) ) | 
						
							| 16 | 15 | eqeq1d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd ( B ^ N ) ) = 1 <-> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) | 
						
							| 17 | 10 12 16 | 3imtr4d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) | 
						
							| 18 | 2 17 | syld |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) |