Step |
Hyp |
Ref |
Expression |
1 |
|
rpexp1i |
|- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
2 |
1
|
3adant3r |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
3 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> B e. ZZ ) |
4 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> A e. ZZ ) |
5 |
|
simp3l |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> M e. NN0 ) |
6 |
|
zexpcl |
|- ( ( A e. ZZ /\ M e. NN0 ) -> ( A ^ M ) e. ZZ ) |
7 |
4 5 6
|
syl2anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( A ^ M ) e. ZZ ) |
8 |
|
simp3r |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> N e. NN0 ) |
9 |
|
rpexp1i |
|- ( ( B e. ZZ /\ ( A ^ M ) e. ZZ /\ N e. NN0 ) -> ( ( B gcd ( A ^ M ) ) = 1 -> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
10 |
3 7 8 9
|
syl3anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( B gcd ( A ^ M ) ) = 1 -> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
11 |
7 3
|
gcdcomd |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A ^ M ) gcd B ) = ( B gcd ( A ^ M ) ) ) |
12 |
11
|
eqeq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd B ) = 1 <-> ( B gcd ( A ^ M ) ) = 1 ) ) |
13 |
|
zexpcl |
|- ( ( B e. ZZ /\ N e. NN0 ) -> ( B ^ N ) e. ZZ ) |
14 |
3 8 13
|
syl2anc |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( B ^ N ) e. ZZ ) |
15 |
7 14
|
gcdcomd |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A ^ M ) gcd ( B ^ N ) ) = ( ( B ^ N ) gcd ( A ^ M ) ) ) |
16 |
15
|
eqeq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd ( B ^ N ) ) = 1 <-> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
17 |
10 12 16
|
3imtr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) |
18 |
2 17
|
syld |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) |