| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) | 
						
							| 2 |  | rpexp |  |-  ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( ( A ^ M ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) | 
						
							| 3 | 2 | biimprd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) | 
						
							| 4 | 3 | 3expa |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> M = 0 ) | 
						
							| 6 | 5 | oveq2d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ M ) = ( A ^ 0 ) ) | 
						
							| 7 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> A e. CC ) | 
						
							| 9 | 8 | exp0d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ 0 ) = 1 ) | 
						
							| 10 | 6 9 | eqtrd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ M ) = 1 ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A ^ M ) gcd B ) = ( 1 gcd B ) ) | 
						
							| 12 |  | 1gcd |  |-  ( B e. ZZ -> ( 1 gcd B ) = 1 ) | 
						
							| 13 | 12 | ad2antlr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( 1 gcd B ) = 1 ) | 
						
							| 14 | 11 13 | eqtrd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A ^ M ) gcd B ) = 1 ) | 
						
							| 15 | 14 | a1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) | 
						
							| 16 | 4 15 | jaodan |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( M e. NN \/ M = 0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) | 
						
							| 17 | 1 16 | sylan2b |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) | 
						
							| 18 | 17 | 3impa |  |-  ( ( A e. ZZ /\ B e. ZZ /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |