Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
2 |
|
rpexp |
|- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( ( A ^ M ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |
3 |
2
|
biimprd |
|- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
4 |
3
|
3expa |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
5 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> M = 0 ) |
6 |
5
|
oveq2d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ M ) = ( A ^ 0 ) ) |
7 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
8 |
7
|
ad2antrr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> A e. CC ) |
9 |
8
|
exp0d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ 0 ) = 1 ) |
10 |
6 9
|
eqtrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ M ) = 1 ) |
11 |
10
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A ^ M ) gcd B ) = ( 1 gcd B ) ) |
12 |
|
1gcd |
|- ( B e. ZZ -> ( 1 gcd B ) = 1 ) |
13 |
12
|
ad2antlr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( 1 gcd B ) = 1 ) |
14 |
11 13
|
eqtrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A ^ M ) gcd B ) = 1 ) |
15 |
14
|
a1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
16 |
4 15
|
jaodan |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( M e. NN \/ M = 0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
17 |
1 16
|
sylan2b |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
18 |
17
|
3impa |
|- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |