| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. RR+ /\ N e. ZZ ) -> A e. RR+ ) |
| 2 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
| 3 |
2
|
adantr |
|- ( ( A e. RR+ /\ N e. ZZ ) -> A =/= 0 ) |
| 4 |
|
simpr |
|- ( ( A e. RR+ /\ N e. ZZ ) -> N e. ZZ ) |
| 5 |
|
rpssre |
|- RR+ C_ RR |
| 6 |
|
ax-resscn |
|- RR C_ CC |
| 7 |
5 6
|
sstri |
|- RR+ C_ CC |
| 8 |
|
rpmulcl |
|- ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ ) |
| 9 |
|
1rp |
|- 1 e. RR+ |
| 10 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
| 11 |
10
|
adantr |
|- ( ( x e. RR+ /\ x =/= 0 ) -> ( 1 / x ) e. RR+ ) |
| 12 |
7 8 9 11
|
expcl2lem |
|- ( ( A e. RR+ /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |
| 13 |
1 3 4 12
|
syl3anc |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |