| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( a = b -> ( a ^ N ) = ( b ^ N ) ) | 
						
							| 2 |  | oveq1 |  |-  ( a = A -> ( a ^ N ) = ( A ^ N ) ) | 
						
							| 3 |  | oveq1 |  |-  ( a = B -> ( a ^ N ) = ( B ^ N ) ) | 
						
							| 4 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 5 |  | rpre |  |-  ( a e. RR+ -> a e. RR ) | 
						
							| 6 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 7 |  | reexpcl |  |-  ( ( a e. RR /\ N e. NN0 ) -> ( a ^ N ) e. RR ) | 
						
							| 8 | 5 6 7 | syl2anr |  |-  ( ( N e. NN /\ a e. RR+ ) -> ( a ^ N ) e. RR ) | 
						
							| 9 |  | simplrl |  |-  ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> a e. RR+ ) | 
						
							| 10 | 9 | rpred |  |-  ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> a e. RR ) | 
						
							| 11 |  | simplrr |  |-  ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> b e. RR+ ) | 
						
							| 12 | 11 | rpred |  |-  ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> b e. RR ) | 
						
							| 13 | 9 | rpge0d |  |-  ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> 0 <_ a ) | 
						
							| 14 |  | simpr |  |-  ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> a < b ) | 
						
							| 15 |  | simpll |  |-  ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> N e. NN ) | 
						
							| 16 |  | expmordi |  |-  ( ( ( a e. RR /\ b e. RR ) /\ ( 0 <_ a /\ a < b ) /\ N e. NN ) -> ( a ^ N ) < ( b ^ N ) ) | 
						
							| 17 | 10 12 13 14 15 16 | syl221anc |  |-  ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> ( a ^ N ) < ( b ^ N ) ) | 
						
							| 18 | 17 | ex |  |-  ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( a < b -> ( a ^ N ) < ( b ^ N ) ) ) | 
						
							| 19 | 1 2 3 4 8 18 | ltord1 |  |-  ( ( N e. NN /\ ( A e. RR+ /\ B e. RR+ ) ) -> ( A < B <-> ( A ^ N ) < ( B ^ N ) ) ) | 
						
							| 20 | 19 | 3impb |  |-  ( ( N e. NN /\ A e. RR+ /\ B e. RR+ ) -> ( A < B <-> ( A ^ N ) < ( B ^ N ) ) ) |