| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR ) |
| 2 |
|
0red |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 0 e. RR ) |
| 3 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A e. RR ) |
| 5 |
|
rpgt0 |
|- ( A e. RR+ -> 0 < A ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 0 < A ) |
| 7 |
|
simp3 |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A <_ B ) |
| 8 |
2 4 1 6 7
|
ltletrd |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 0 < B ) |
| 9 |
|
elrp |
|- ( B e. RR+ <-> ( B e. RR /\ 0 < B ) ) |
| 10 |
1 8 9
|
sylanbrc |
|- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR+ ) |