Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpgecld.1 | |- ( ph -> A e. RR ) |
|
| rpgecld.2 | |- ( ph -> B e. RR+ ) |
||
| rpgecld.3 | |- ( ph -> B <_ A ) |
||
| Assertion | rpgecld | |- ( ph -> A e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | |- ( ph -> A e. RR ) |
|
| 2 | rpgecld.2 | |- ( ph -> B e. RR+ ) |
|
| 3 | rpgecld.3 | |- ( ph -> B <_ A ) |
|
| 4 | rpgecl | |- ( ( B e. RR+ /\ A e. RR /\ B <_ A ) -> A e. RR+ ) |
|
| 5 | 2 1 3 4 | syl3anc | |- ( ph -> A e. RR+ ) |