| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( k = 1 -> ( A ^ k ) = ( A ^ 1 ) ) |
| 2 |
1
|
oveq1d |
|- ( k = 1 -> ( ( A ^ k ) gcd B ) = ( ( A ^ 1 ) gcd B ) ) |
| 3 |
2
|
eqeq1d |
|- ( k = 1 -> ( ( ( A ^ k ) gcd B ) = 1 <-> ( ( A ^ 1 ) gcd B ) = 1 ) ) |
| 4 |
3
|
imbi2d |
|- ( k = 1 -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ k ) gcd B ) = 1 ) <-> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ 1 ) gcd B ) = 1 ) ) ) |
| 5 |
|
oveq2 |
|- ( k = n -> ( A ^ k ) = ( A ^ n ) ) |
| 6 |
5
|
oveq1d |
|- ( k = n -> ( ( A ^ k ) gcd B ) = ( ( A ^ n ) gcd B ) ) |
| 7 |
6
|
eqeq1d |
|- ( k = n -> ( ( ( A ^ k ) gcd B ) = 1 <-> ( ( A ^ n ) gcd B ) = 1 ) ) |
| 8 |
7
|
imbi2d |
|- ( k = n -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ k ) gcd B ) = 1 ) <-> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ n ) gcd B ) = 1 ) ) ) |
| 9 |
|
oveq2 |
|- ( k = ( n + 1 ) -> ( A ^ k ) = ( A ^ ( n + 1 ) ) ) |
| 10 |
9
|
oveq1d |
|- ( k = ( n + 1 ) -> ( ( A ^ k ) gcd B ) = ( ( A ^ ( n + 1 ) ) gcd B ) ) |
| 11 |
10
|
eqeq1d |
|- ( k = ( n + 1 ) -> ( ( ( A ^ k ) gcd B ) = 1 <-> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) |
| 12 |
11
|
imbi2d |
|- ( k = ( n + 1 ) -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ k ) gcd B ) = 1 ) <-> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) ) |
| 13 |
|
oveq2 |
|- ( k = N -> ( A ^ k ) = ( A ^ N ) ) |
| 14 |
13
|
oveq1d |
|- ( k = N -> ( ( A ^ k ) gcd B ) = ( ( A ^ N ) gcd B ) ) |
| 15 |
14
|
eqeq1d |
|- ( k = N -> ( ( ( A ^ k ) gcd B ) = 1 <-> ( ( A ^ N ) gcd B ) = 1 ) ) |
| 16 |
15
|
imbi2d |
|- ( k = N -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ k ) gcd B ) = 1 ) <-> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd B ) = 1 ) ) ) |
| 17 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 18 |
17
|
exp1d |
|- ( A e. NN -> ( A ^ 1 ) = A ) |
| 19 |
18
|
oveq1d |
|- ( A e. NN -> ( ( A ^ 1 ) gcd B ) = ( A gcd B ) ) |
| 20 |
19
|
adantr |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A ^ 1 ) gcd B ) = ( A gcd B ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( A e. NN /\ B e. NN ) -> ( ( ( A ^ 1 ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |
| 22 |
21
|
biimpar |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ 1 ) gcd B ) = 1 ) |
| 23 |
|
df-3an |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) <-> ( ( A e. NN /\ B e. NN ) /\ n e. NN ) ) |
| 24 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> A e. NN ) |
| 25 |
24
|
nncnd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> A e. CC ) |
| 26 |
|
simpl3 |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> n e. NN ) |
| 27 |
26
|
nnnn0d |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> n e. NN0 ) |
| 28 |
25 27
|
expp1d |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ ( n + 1 ) ) = ( ( A ^ n ) x. A ) ) |
| 29 |
|
simp1 |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> A e. NN ) |
| 30 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 31 |
30
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> n e. NN0 ) |
| 32 |
29 31
|
nnexpcld |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( A ^ n ) e. NN ) |
| 33 |
32
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( A ^ n ) e. ZZ ) |
| 34 |
33
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ n ) e. ZZ ) |
| 35 |
34
|
zcnd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ n ) e. CC ) |
| 36 |
35 25
|
mulcomd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ n ) x. A ) = ( A x. ( A ^ n ) ) ) |
| 37 |
28 36
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ ( n + 1 ) ) = ( A x. ( A ^ n ) ) ) |
| 38 |
37
|
oveq2d |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( B gcd ( A ^ ( n + 1 ) ) ) = ( B gcd ( A x. ( A ^ n ) ) ) ) |
| 39 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> B e. NN ) |
| 40 |
32
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ n ) e. NN ) |
| 41 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 42 |
41
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> A e. ZZ ) |
| 43 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 44 |
43
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> B e. ZZ ) |
| 45 |
42 44
|
gcdcomd |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( A gcd B ) = ( B gcd A ) ) |
| 46 |
45
|
eqeq1d |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( ( A gcd B ) = 1 <-> ( B gcd A ) = 1 ) ) |
| 47 |
46
|
biimpa |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( B gcd A ) = 1 ) |
| 48 |
|
rpmulgcd |
|- ( ( ( B e. NN /\ A e. NN /\ ( A ^ n ) e. NN ) /\ ( B gcd A ) = 1 ) -> ( B gcd ( A x. ( A ^ n ) ) ) = ( B gcd ( A ^ n ) ) ) |
| 49 |
39 24 40 47 48
|
syl31anc |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( B gcd ( A x. ( A ^ n ) ) ) = ( B gcd ( A ^ n ) ) ) |
| 50 |
38 49
|
eqtrd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( B gcd ( A ^ ( n + 1 ) ) ) = ( B gcd ( A ^ n ) ) ) |
| 51 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 52 |
51
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 53 |
52
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( n + 1 ) e. NN ) |
| 54 |
53
|
nnnn0d |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( n + 1 ) e. NN0 ) |
| 55 |
24 54
|
nnexpcld |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ ( n + 1 ) ) e. NN ) |
| 56 |
55
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ ( n + 1 ) ) e. ZZ ) |
| 57 |
44
|
adantr |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> B e. ZZ ) |
| 58 |
56 57
|
gcdcomd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ ( n + 1 ) ) gcd B ) = ( B gcd ( A ^ ( n + 1 ) ) ) ) |
| 59 |
34 57
|
gcdcomd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ n ) gcd B ) = ( B gcd ( A ^ n ) ) ) |
| 60 |
50 58 59
|
3eqtr4d |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ ( n + 1 ) ) gcd B ) = ( ( A ^ n ) gcd B ) ) |
| 61 |
60
|
eqeq1d |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( ( A ^ ( n + 1 ) ) gcd B ) = 1 <-> ( ( A ^ n ) gcd B ) = 1 ) ) |
| 62 |
61
|
biimprd |
|- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( ( A ^ n ) gcd B ) = 1 -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) |
| 63 |
23 62
|
sylanbr |
|- ( ( ( ( A e. NN /\ B e. NN ) /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( ( A ^ n ) gcd B ) = 1 -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) |
| 64 |
63
|
an32s |
|- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ n e. NN ) -> ( ( ( A ^ n ) gcd B ) = 1 -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) |
| 65 |
64
|
expcom |
|- ( n e. NN -> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( ( A ^ n ) gcd B ) = 1 -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) ) |
| 66 |
65
|
a2d |
|- ( n e. NN -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ n ) gcd B ) = 1 ) -> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) ) |
| 67 |
4 8 12 16 22 66
|
nnind |
|- ( N e. NN -> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd B ) = 1 ) ) |
| 68 |
67
|
expd |
|- ( N e. NN -> ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) ) |
| 69 |
68
|
com12 |
|- ( ( A e. NN /\ B e. NN ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) ) |
| 70 |
69
|
3impia |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) |