Description: For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rpltrp | |- A. x e. RR+ E. y e. RR+ y < x |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rphalfcl | |- ( x e. RR+ -> ( x / 2 ) e. RR+ ) |
|
2 | breq1 | |- ( y = ( x / 2 ) -> ( y < x <-> ( x / 2 ) < x ) ) |
|
3 | 2 | adantl | |- ( ( x e. RR+ /\ y = ( x / 2 ) ) -> ( y < x <-> ( x / 2 ) < x ) ) |
4 | rphalflt | |- ( x e. RR+ -> ( x / 2 ) < x ) |
|
5 | 1 3 4 | rspcedvd | |- ( x e. RR+ -> E. y e. RR+ y < x ) |
6 | 5 | rgen | |- A. x e. RR+ E. y e. RR+ y < x |