Metamath Proof Explorer


Theorem rpmsubg

Description: The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypothesis cnmgpabl.m
|- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) )
Assertion rpmsubg
|- RR+ e. ( SubGrp ` M )

Proof

Step Hyp Ref Expression
1 cnmgpabl.m
 |-  M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) )
2 rpcn
 |-  ( x e. RR+ -> x e. CC )
3 rpne0
 |-  ( x e. RR+ -> x =/= 0 )
4 rpmulcl
 |-  ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ )
5 1rp
 |-  1 e. RR+
6 rpreccl
 |-  ( x e. RR+ -> ( 1 / x ) e. RR+ )
7 1 2 3 4 5 6 cnmsubglem
 |-  RR+ e. ( SubGrp ` M )