Step |
Hyp |
Ref |
Expression |
1 |
|
mulgcddvds |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
2 |
|
oveq12 |
|- ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) = ( 1 x. 1 ) ) |
3 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
4 |
2 3
|
eqtrdi |
|- ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) = 1 ) |
5 |
4
|
breq2d |
|- ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) <-> ( K gcd ( M x. N ) ) || 1 ) ) |
6 |
1 5
|
syl5ibcom |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) || 1 ) ) |
7 |
|
simp1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
8 |
|
zmulcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
9 |
8
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
10 |
7 9
|
gcdcld |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) e. NN0 ) |
11 |
|
dvds1 |
|- ( ( K gcd ( M x. N ) ) e. NN0 -> ( ( K gcd ( M x. N ) ) || 1 <-> ( K gcd ( M x. N ) ) = 1 ) ) |
12 |
10 11
|
syl |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd ( M x. N ) ) || 1 <-> ( K gcd ( M x. N ) ) = 1 ) ) |
13 |
6 12
|
sylibd |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = 1 ) ) |