Metamath Proof Explorer


Theorem rpmulcld

Description: Closure law for multiplication of positive reals. Part of Axiom 7 of Apostol p. 20. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1
|- ( ph -> A e. RR+ )
rpaddcld.1
|- ( ph -> B e. RR+ )
Assertion rpmulcld
|- ( ph -> ( A x. B ) e. RR+ )

Proof

Step Hyp Ref Expression
1 rpred.1
 |-  ( ph -> A e. RR+ )
2 rpaddcld.1
 |-  ( ph -> B e. RR+ )
3 rpmulcl
 |-  ( ( A e. RR+ /\ B e. RR+ ) -> ( A x. B ) e. RR+ )
4 1 2 3 syl2anc
 |-  ( ph -> ( A x. B ) e. RR+ )