Step |
Hyp |
Ref |
Expression |
1 |
|
gcdmultiple |
|- ( ( K e. NN /\ N e. NN ) -> ( K gcd ( K x. N ) ) = K ) |
2 |
1
|
3adant2 |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( K gcd ( K x. N ) ) = K ) |
3 |
2
|
oveq1d |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K gcd ( K x. N ) ) gcd ( M x. N ) ) = ( K gcd ( M x. N ) ) ) |
4 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
5 |
4
|
3ad2ant1 |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> K e. ZZ ) |
6 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
7 |
|
zmulcl |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
8 |
4 6 7
|
syl2an |
|- ( ( K e. NN /\ N e. NN ) -> ( K x. N ) e. ZZ ) |
9 |
8
|
3adant2 |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( K x. N ) e. ZZ ) |
10 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
11 |
|
zmulcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
12 |
10 6 11
|
syl2an |
|- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. ZZ ) |
13 |
12
|
3adant1 |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( M x. N ) e. ZZ ) |
14 |
|
gcdass |
|- ( ( K e. ZZ /\ ( K x. N ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K gcd ( K x. N ) ) gcd ( M x. N ) ) = ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) ) |
15 |
5 9 13 14
|
syl3anc |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K gcd ( K x. N ) ) gcd ( M x. N ) ) = ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) ) |
16 |
3 15
|
eqtr3d |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( K gcd ( M x. N ) ) = ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) ) |
17 |
16
|
adantr |
|- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( K gcd ( M x. N ) ) = ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) ) |
18 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
19 |
|
mulgcdr |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. NN0 ) -> ( ( K x. N ) gcd ( M x. N ) ) = ( ( K gcd M ) x. N ) ) |
20 |
4 10 18 19
|
syl3an |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K x. N ) gcd ( M x. N ) ) = ( ( K gcd M ) x. N ) ) |
21 |
|
oveq1 |
|- ( ( K gcd M ) = 1 -> ( ( K gcd M ) x. N ) = ( 1 x. N ) ) |
22 |
20 21
|
sylan9eq |
|- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( ( K x. N ) gcd ( M x. N ) ) = ( 1 x. N ) ) |
23 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
24 |
23
|
3ad2ant3 |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> N e. CC ) |
25 |
24
|
adantr |
|- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> N e. CC ) |
26 |
25
|
mulid2d |
|- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( 1 x. N ) = N ) |
27 |
22 26
|
eqtrd |
|- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( ( K x. N ) gcd ( M x. N ) ) = N ) |
28 |
27
|
oveq2d |
|- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) = ( K gcd N ) ) |
29 |
17 28
|
eqtrd |
|- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( K gcd ( M x. N ) ) = ( K gcd N ) ) |