Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> K e. ZZ ) |
2 |
|
simpl2 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> M e. ZZ ) |
3 |
|
simpl3 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> N e. ZZ ) |
4 |
2 3
|
zmulcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( M x. N ) e. ZZ ) |
5 |
1 4
|
gcdcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) e. NN0 ) |
6 |
1 2
|
gcdcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) e. NN0 ) |
7 |
1 3
|
gcdcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) e. NN0 ) |
8 |
6 7
|
nn0mulcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) e. NN0 ) |
9 |
|
mulgcddvds |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
10 |
9
|
adantr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
11 |
|
gcddvds |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
12 |
1 2 11
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
13 |
12
|
simpld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) || K ) |
14 |
|
gcddvds |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) ) |
15 |
1 3 14
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) ) |
16 |
15
|
simpld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) || K ) |
17 |
6
|
nn0zd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) e. ZZ ) |
18 |
7
|
nn0zd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) e. ZZ ) |
19 |
17 18
|
gcdcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) e. NN0 ) |
20 |
19
|
nn0zd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) e. ZZ ) |
21 |
|
gcddvds |
|- ( ( ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) ) |
22 |
17 18 21
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) ) |
23 |
22
|
simpld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) ) |
24 |
12
|
simprd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) || M ) |
25 |
20 17 2 23 24
|
dvdstrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || M ) |
26 |
22
|
simprd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) |
27 |
15
|
simprd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) || N ) |
28 |
20 18 3 26 27
|
dvdstrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || N ) |
29 |
|
dvdsgcd |
|- ( ( ( ( K gcd M ) gcd ( K gcd N ) ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( K gcd M ) gcd ( K gcd N ) ) || M /\ ( ( K gcd M ) gcd ( K gcd N ) ) || N ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) ) |
30 |
20 2 3 29
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) gcd ( K gcd N ) ) || M /\ ( ( K gcd M ) gcd ( K gcd N ) ) || N ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) ) |
31 |
25 28 30
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) |
32 |
|
simpr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( M gcd N ) = 1 ) |
33 |
31 32
|
breqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || 1 ) |
34 |
|
dvds1 |
|- ( ( ( K gcd M ) gcd ( K gcd N ) ) e. NN0 -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || 1 <-> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) ) |
35 |
19 34
|
syl |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || 1 <-> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) ) |
36 |
33 35
|
mpbid |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) |
37 |
|
coprmdvds2 |
|- ( ( ( ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ /\ K e. ZZ ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) -> ( ( ( K gcd M ) || K /\ ( K gcd N ) || K ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) ) |
38 |
17 18 1 36 37
|
syl31anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) || K /\ ( K gcd N ) || K ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) ) |
39 |
13 16 38
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) |
40 |
|
dvdscmul |
|- ( ( ( K gcd N ) e. ZZ /\ N e. ZZ /\ ( K gcd M ) e. ZZ ) -> ( ( K gcd N ) || N -> ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) ) ) |
41 |
18 3 17 40
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd N ) || N -> ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) ) ) |
42 |
|
dvdsmulc |
|- ( ( ( K gcd M ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) || M -> ( ( K gcd M ) x. N ) || ( M x. N ) ) ) |
43 |
17 2 3 42
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) || M -> ( ( K gcd M ) x. N ) || ( M x. N ) ) ) |
44 |
17 18
|
zmulcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ ) |
45 |
17 3
|
zmulcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. N ) e. ZZ ) |
46 |
|
dvdstr |
|- ( ( ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ /\ ( ( K gcd M ) x. N ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) /\ ( ( K gcd M ) x. N ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
47 |
44 45 4 46
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) /\ ( ( K gcd M ) x. N ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
48 |
41 43 47
|
syl2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd N ) || N /\ ( K gcd M ) || M ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
49 |
27 24 48
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) |
50 |
|
dvdsgcd |
|- ( ( ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ /\ K e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || K /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) |
51 |
44 1 4 50
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || K /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) |
52 |
39 49 51
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) |
53 |
|
dvdseq |
|- ( ( ( ( K gcd ( M x. N ) ) e. NN0 /\ ( ( K gcd M ) x. ( K gcd N ) ) e. NN0 ) /\ ( ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) ) |
54 |
5 8 10 52 53
|
syl22anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) ) |