| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> K e. ZZ ) |
| 2 |
|
simpl2 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> M e. ZZ ) |
| 3 |
|
simpl3 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> N e. ZZ ) |
| 4 |
2 3
|
zmulcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( M x. N ) e. ZZ ) |
| 5 |
1 4
|
gcdcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) e. NN0 ) |
| 6 |
1 2
|
gcdcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) e. NN0 ) |
| 7 |
1 3
|
gcdcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) e. NN0 ) |
| 8 |
6 7
|
nn0mulcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) e. NN0 ) |
| 9 |
|
mulgcddvds |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
| 10 |
9
|
adantr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
| 11 |
|
gcddvds |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
| 12 |
1 2 11
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) ) |
| 13 |
12
|
simpld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) || K ) |
| 14 |
|
gcddvds |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) ) |
| 15 |
1 3 14
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) ) |
| 16 |
15
|
simpld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) || K ) |
| 17 |
6
|
nn0zd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) e. ZZ ) |
| 18 |
7
|
nn0zd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) e. ZZ ) |
| 19 |
17 18
|
gcdcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) e. NN0 ) |
| 20 |
19
|
nn0zd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) e. ZZ ) |
| 21 |
|
gcddvds |
|- ( ( ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) ) |
| 22 |
17 18 21
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) ) |
| 23 |
22
|
simpld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) ) |
| 24 |
12
|
simprd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) || M ) |
| 25 |
20 17 2 23 24
|
dvdstrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || M ) |
| 26 |
22
|
simprd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) |
| 27 |
15
|
simprd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) || N ) |
| 28 |
20 18 3 26 27
|
dvdstrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || N ) |
| 29 |
|
dvdsgcd |
|- ( ( ( ( K gcd M ) gcd ( K gcd N ) ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( K gcd M ) gcd ( K gcd N ) ) || M /\ ( ( K gcd M ) gcd ( K gcd N ) ) || N ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) ) |
| 30 |
20 2 3 29
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) gcd ( K gcd N ) ) || M /\ ( ( K gcd M ) gcd ( K gcd N ) ) || N ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) ) |
| 31 |
25 28 30
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) |
| 32 |
|
simpr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( M gcd N ) = 1 ) |
| 33 |
31 32
|
breqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || 1 ) |
| 34 |
|
dvds1 |
|- ( ( ( K gcd M ) gcd ( K gcd N ) ) e. NN0 -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || 1 <-> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) ) |
| 35 |
19 34
|
syl |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || 1 <-> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) ) |
| 36 |
33 35
|
mpbid |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) |
| 37 |
|
coprmdvds2 |
|- ( ( ( ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ /\ K e. ZZ ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) -> ( ( ( K gcd M ) || K /\ ( K gcd N ) || K ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) ) |
| 38 |
17 18 1 36 37
|
syl31anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) || K /\ ( K gcd N ) || K ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) ) |
| 39 |
13 16 38
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) |
| 40 |
|
dvdscmul |
|- ( ( ( K gcd N ) e. ZZ /\ N e. ZZ /\ ( K gcd M ) e. ZZ ) -> ( ( K gcd N ) || N -> ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) ) ) |
| 41 |
18 3 17 40
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd N ) || N -> ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) ) ) |
| 42 |
|
dvdsmulc |
|- ( ( ( K gcd M ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) || M -> ( ( K gcd M ) x. N ) || ( M x. N ) ) ) |
| 43 |
17 2 3 42
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) || M -> ( ( K gcd M ) x. N ) || ( M x. N ) ) ) |
| 44 |
17 18
|
zmulcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ ) |
| 45 |
17 3
|
zmulcld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. N ) e. ZZ ) |
| 46 |
|
dvdstr |
|- ( ( ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ /\ ( ( K gcd M ) x. N ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) /\ ( ( K gcd M ) x. N ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
| 47 |
44 45 4 46
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) /\ ( ( K gcd M ) x. N ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
| 48 |
41 43 47
|
syl2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd N ) || N /\ ( K gcd M ) || M ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) ) |
| 49 |
27 24 48
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) |
| 50 |
|
dvdsgcd |
|- ( ( ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ /\ K e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || K /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) |
| 51 |
44 1 4 50
|
syl3anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || K /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) |
| 52 |
39 49 51
|
mp2and |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) |
| 53 |
|
dvdseq |
|- ( ( ( ( K gcd ( M x. N ) ) e. NN0 /\ ( ( K gcd M ) x. ( K gcd N ) ) e. NN0 ) /\ ( ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) ) |
| 54 |
5 8 10 52 53
|
syl22anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) ) |