Metamath Proof Explorer


Theorem rpmulgcd2

Description: If M is relatively prime to N , then the GCD of K with M x. N is the product of the GCDs with M and N respectively. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion rpmulgcd2
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) )

Proof

Step Hyp Ref Expression
1 simpl1
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> K e. ZZ )
2 simpl2
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> M e. ZZ )
3 simpl3
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> N e. ZZ )
4 2 3 zmulcld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( M x. N ) e. ZZ )
5 1 4 gcdcld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) e. NN0 )
6 1 2 gcdcld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) e. NN0 )
7 1 3 gcdcld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) e. NN0 )
8 6 7 nn0mulcld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) e. NN0 )
9 mulgcddvds
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) )
10 9 adantr
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) )
11 gcddvds
 |-  ( ( K e. ZZ /\ M e. ZZ ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) )
12 1 2 11 syl2anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) || K /\ ( K gcd M ) || M ) )
13 12 simpld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) || K )
14 gcddvds
 |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) )
15 1 3 14 syl2anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) )
16 15 simpld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) || K )
17 6 nn0zd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) e. ZZ )
18 7 nn0zd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) e. ZZ )
19 17 18 gcdcld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) e. NN0 )
20 19 nn0zd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) e. ZZ )
21 gcddvds
 |-  ( ( ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) )
22 17 18 21 syl2anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) ) )
23 22 simpld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd M ) )
24 12 simprd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd M ) || M )
25 20 17 2 23 24 dvdstrd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || M )
26 22 simprd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( K gcd N ) )
27 15 simprd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd N ) || N )
28 20 18 3 26 27 dvdstrd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || N )
29 dvdsgcd
 |-  ( ( ( ( K gcd M ) gcd ( K gcd N ) ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( K gcd M ) gcd ( K gcd N ) ) || M /\ ( ( K gcd M ) gcd ( K gcd N ) ) || N ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) )
30 20 2 3 29 syl3anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) gcd ( K gcd N ) ) || M /\ ( ( K gcd M ) gcd ( K gcd N ) ) || N ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) ) )
31 25 28 30 mp2and
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || ( M gcd N ) )
32 simpr
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( M gcd N ) = 1 )
33 31 32 breqtrd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) || 1 )
34 dvds1
 |-  ( ( ( K gcd M ) gcd ( K gcd N ) ) e. NN0 -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || 1 <-> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) )
35 19 34 syl
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) gcd ( K gcd N ) ) || 1 <-> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) )
36 33 35 mpbid
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) gcd ( K gcd N ) ) = 1 )
37 coprmdvds2
 |-  ( ( ( ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ /\ K e. ZZ ) /\ ( ( K gcd M ) gcd ( K gcd N ) ) = 1 ) -> ( ( ( K gcd M ) || K /\ ( K gcd N ) || K ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) )
38 17 18 1 36 37 syl31anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd M ) || K /\ ( K gcd N ) || K ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K ) )
39 13 16 38 mp2and
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || K )
40 dvdscmul
 |-  ( ( ( K gcd N ) e. ZZ /\ N e. ZZ /\ ( K gcd M ) e. ZZ ) -> ( ( K gcd N ) || N -> ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) ) )
41 18 3 17 40 syl3anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd N ) || N -> ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) ) )
42 dvdsmulc
 |-  ( ( ( K gcd M ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) || M -> ( ( K gcd M ) x. N ) || ( M x. N ) ) )
43 17 2 3 42 syl3anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) || M -> ( ( K gcd M ) x. N ) || ( M x. N ) ) )
44 17 18 zmulcld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ )
45 17 3 zmulcld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. N ) e. ZZ )
46 dvdstr
 |-  ( ( ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ /\ ( ( K gcd M ) x. N ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) /\ ( ( K gcd M ) x. N ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) )
47 44 45 4 46 syl3anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || ( ( K gcd M ) x. N ) /\ ( ( K gcd M ) x. N ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) )
48 41 43 47 syl2and
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( K gcd N ) || N /\ ( K gcd M ) || M ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) )
49 27 24 48 mp2and
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) )
50 dvdsgcd
 |-  ( ( ( ( K gcd M ) x. ( K gcd N ) ) e. ZZ /\ K e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || K /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) )
51 44 1 4 50 syl3anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( ( ( K gcd M ) x. ( K gcd N ) ) || K /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( M x. N ) ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) )
52 39 49 51 mp2and
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) )
53 dvdseq
 |-  ( ( ( ( K gcd ( M x. N ) ) e. NN0 /\ ( ( K gcd M ) x. ( K gcd N ) ) e. NN0 ) /\ ( ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) /\ ( ( K gcd M ) x. ( K gcd N ) ) || ( K gcd ( M x. N ) ) ) ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) )
54 5 8 10 52 53 syl22anc
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = ( ( K gcd M ) x. ( K gcd N ) ) )