Step |
Hyp |
Ref |
Expression |
1 |
|
nnex |
|- NN e. _V |
2 |
|
qex |
|- QQ e. _V |
3 |
1 2
|
rpnnen1 |
|- RR ~<_ ( QQ ^m NN ) |
4 |
|
qnnen |
|- QQ ~~ NN |
5 |
1
|
canth2 |
|- NN ~< ~P NN |
6 |
|
ensdomtr |
|- ( ( QQ ~~ NN /\ NN ~< ~P NN ) -> QQ ~< ~P NN ) |
7 |
4 5 6
|
mp2an |
|- QQ ~< ~P NN |
8 |
|
sdomdom |
|- ( QQ ~< ~P NN -> QQ ~<_ ~P NN ) |
9 |
|
mapdom1 |
|- ( QQ ~<_ ~P NN -> ( QQ ^m NN ) ~<_ ( ~P NN ^m NN ) ) |
10 |
7 8 9
|
mp2b |
|- ( QQ ^m NN ) ~<_ ( ~P NN ^m NN ) |
11 |
1
|
pw2en |
|- ~P NN ~~ ( 2o ^m NN ) |
12 |
1
|
enref |
|- NN ~~ NN |
13 |
|
mapen |
|- ( ( ~P NN ~~ ( 2o ^m NN ) /\ NN ~~ NN ) -> ( ~P NN ^m NN ) ~~ ( ( 2o ^m NN ) ^m NN ) ) |
14 |
11 12 13
|
mp2an |
|- ( ~P NN ^m NN ) ~~ ( ( 2o ^m NN ) ^m NN ) |
15 |
|
domentr |
|- ( ( ( QQ ^m NN ) ~<_ ( ~P NN ^m NN ) /\ ( ~P NN ^m NN ) ~~ ( ( 2o ^m NN ) ^m NN ) ) -> ( QQ ^m NN ) ~<_ ( ( 2o ^m NN ) ^m NN ) ) |
16 |
10 14 15
|
mp2an |
|- ( QQ ^m NN ) ~<_ ( ( 2o ^m NN ) ^m NN ) |
17 |
|
2onn |
|- 2o e. _om |
18 |
|
mapxpen |
|- ( ( 2o e. _om /\ NN e. _V /\ NN e. _V ) -> ( ( 2o ^m NN ) ^m NN ) ~~ ( 2o ^m ( NN X. NN ) ) ) |
19 |
17 1 1 18
|
mp3an |
|- ( ( 2o ^m NN ) ^m NN ) ~~ ( 2o ^m ( NN X. NN ) ) |
20 |
17
|
elexi |
|- 2o e. _V |
21 |
20
|
enref |
|- 2o ~~ 2o |
22 |
|
xpnnen |
|- ( NN X. NN ) ~~ NN |
23 |
|
mapen |
|- ( ( 2o ~~ 2o /\ ( NN X. NN ) ~~ NN ) -> ( 2o ^m ( NN X. NN ) ) ~~ ( 2o ^m NN ) ) |
24 |
21 22 23
|
mp2an |
|- ( 2o ^m ( NN X. NN ) ) ~~ ( 2o ^m NN ) |
25 |
19 24
|
entri |
|- ( ( 2o ^m NN ) ^m NN ) ~~ ( 2o ^m NN ) |
26 |
25 11
|
entr4i |
|- ( ( 2o ^m NN ) ^m NN ) ~~ ~P NN |
27 |
|
domentr |
|- ( ( ( QQ ^m NN ) ~<_ ( ( 2o ^m NN ) ^m NN ) /\ ( ( 2o ^m NN ) ^m NN ) ~~ ~P NN ) -> ( QQ ^m NN ) ~<_ ~P NN ) |
28 |
16 26 27
|
mp2an |
|- ( QQ ^m NN ) ~<_ ~P NN |
29 |
|
domtr |
|- ( ( RR ~<_ ( QQ ^m NN ) /\ ( QQ ^m NN ) ~<_ ~P NN ) -> RR ~<_ ~P NN ) |
30 |
3 28 29
|
mp2an |
|- RR ~<_ ~P NN |
31 |
|
rpnnen2 |
|- ~P NN ~<_ ( 0 [,] 1 ) |
32 |
|
reex |
|- RR e. _V |
33 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
34 |
|
ssdomg |
|- ( RR e. _V -> ( ( 0 [,] 1 ) C_ RR -> ( 0 [,] 1 ) ~<_ RR ) ) |
35 |
32 33 34
|
mp2 |
|- ( 0 [,] 1 ) ~<_ RR |
36 |
|
domtr |
|- ( ( ~P NN ~<_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) ~<_ RR ) -> ~P NN ~<_ RR ) |
37 |
31 35 36
|
mp2an |
|- ~P NN ~<_ RR |
38 |
|
sbth |
|- ( ( RR ~<_ ~P NN /\ ~P NN ~<_ RR ) -> RR ~~ ~P NN ) |
39 |
30 37 38
|
mp2an |
|- RR ~~ ~P NN |