Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1.n |
|- NN e. _V |
2 |
|
rpnnen1.q |
|- QQ e. _V |
3 |
|
oveq1 |
|- ( m = n -> ( m / k ) = ( n / k ) ) |
4 |
3
|
breq1d |
|- ( m = n -> ( ( m / k ) < x <-> ( n / k ) < x ) ) |
5 |
4
|
cbvrabv |
|- { m e. ZZ | ( m / k ) < x } = { n e. ZZ | ( n / k ) < x } |
6 |
|
oveq2 |
|- ( j = k -> ( m / j ) = ( m / k ) ) |
7 |
6
|
breq1d |
|- ( j = k -> ( ( m / j ) < y <-> ( m / k ) < y ) ) |
8 |
7
|
rabbidv |
|- ( j = k -> { m e. ZZ | ( m / j ) < y } = { m e. ZZ | ( m / k ) < y } ) |
9 |
8
|
supeq1d |
|- ( j = k -> sup ( { m e. ZZ | ( m / j ) < y } , RR , < ) = sup ( { m e. ZZ | ( m / k ) < y } , RR , < ) ) |
10 |
|
id |
|- ( j = k -> j = k ) |
11 |
9 10
|
oveq12d |
|- ( j = k -> ( sup ( { m e. ZZ | ( m / j ) < y } , RR , < ) / j ) = ( sup ( { m e. ZZ | ( m / k ) < y } , RR , < ) / k ) ) |
12 |
11
|
cbvmptv |
|- ( j e. NN |-> ( sup ( { m e. ZZ | ( m / j ) < y } , RR , < ) / j ) ) = ( k e. NN |-> ( sup ( { m e. ZZ | ( m / k ) < y } , RR , < ) / k ) ) |
13 |
|
breq2 |
|- ( y = x -> ( ( m / k ) < y <-> ( m / k ) < x ) ) |
14 |
13
|
rabbidv |
|- ( y = x -> { m e. ZZ | ( m / k ) < y } = { m e. ZZ | ( m / k ) < x } ) |
15 |
14
|
supeq1d |
|- ( y = x -> sup ( { m e. ZZ | ( m / k ) < y } , RR , < ) = sup ( { m e. ZZ | ( m / k ) < x } , RR , < ) ) |
16 |
15
|
oveq1d |
|- ( y = x -> ( sup ( { m e. ZZ | ( m / k ) < y } , RR , < ) / k ) = ( sup ( { m e. ZZ | ( m / k ) < x } , RR , < ) / k ) ) |
17 |
16
|
mpteq2dv |
|- ( y = x -> ( k e. NN |-> ( sup ( { m e. ZZ | ( m / k ) < y } , RR , < ) / k ) ) = ( k e. NN |-> ( sup ( { m e. ZZ | ( m / k ) < x } , RR , < ) / k ) ) ) |
18 |
12 17
|
eqtrid |
|- ( y = x -> ( j e. NN |-> ( sup ( { m e. ZZ | ( m / j ) < y } , RR , < ) / j ) ) = ( k e. NN |-> ( sup ( { m e. ZZ | ( m / k ) < x } , RR , < ) / k ) ) ) |
19 |
18
|
cbvmptv |
|- ( y e. RR |-> ( j e. NN |-> ( sup ( { m e. ZZ | ( m / j ) < y } , RR , < ) / j ) ) ) = ( x e. RR |-> ( k e. NN |-> ( sup ( { m e. ZZ | ( m / k ) < x } , RR , < ) / k ) ) ) |
20 |
5 19 1 2
|
rpnnen1lem6 |
|- RR ~<_ ( QQ ^m NN ) |