Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
|- T = { n e. ZZ | ( n / k ) < x } |
2 |
|
rpnnen1lem.2 |
|- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
3 |
1
|
ssrab3 |
|- T C_ ZZ |
4 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
5 |
|
remulcl |
|- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
6 |
5
|
ancoms |
|- ( ( x e. RR /\ k e. RR ) -> ( k x. x ) e. RR ) |
7 |
4 6
|
sylan2 |
|- ( ( x e. RR /\ k e. NN ) -> ( k x. x ) e. RR ) |
8 |
|
btwnz |
|- ( ( k x. x ) e. RR -> ( E. n e. ZZ n < ( k x. x ) /\ E. n e. ZZ ( k x. x ) < n ) ) |
9 |
8
|
simpld |
|- ( ( k x. x ) e. RR -> E. n e. ZZ n < ( k x. x ) ) |
10 |
7 9
|
syl |
|- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ n < ( k x. x ) ) |
11 |
|
zre |
|- ( n e. ZZ -> n e. RR ) |
12 |
11
|
adantl |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> n e. RR ) |
13 |
|
simpll |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> x e. RR ) |
14 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
15 |
4 14
|
jca |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
16 |
15
|
ad2antlr |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k e. RR /\ 0 < k ) ) |
17 |
|
ltdivmul |
|- ( ( n e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
18 |
12 13 16 17
|
syl3anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
19 |
18
|
rexbidva |
|- ( ( x e. RR /\ k e. NN ) -> ( E. n e. ZZ ( n / k ) < x <-> E. n e. ZZ n < ( k x. x ) ) ) |
20 |
10 19
|
mpbird |
|- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ ( n / k ) < x ) |
21 |
|
rabn0 |
|- ( { n e. ZZ | ( n / k ) < x } =/= (/) <-> E. n e. ZZ ( n / k ) < x ) |
22 |
20 21
|
sylibr |
|- ( ( x e. RR /\ k e. NN ) -> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
23 |
1
|
neeq1i |
|- ( T =/= (/) <-> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
24 |
22 23
|
sylibr |
|- ( ( x e. RR /\ k e. NN ) -> T =/= (/) ) |
25 |
1
|
rabeq2i |
|- ( n e. T <-> ( n e. ZZ /\ ( n / k ) < x ) ) |
26 |
4
|
ad2antlr |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> k e. RR ) |
27 |
26 13 5
|
syl2anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k x. x ) e. RR ) |
28 |
|
ltle |
|- ( ( n e. RR /\ ( k x. x ) e. RR ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
29 |
12 27 28
|
syl2anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
30 |
18 29
|
sylbid |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x -> n <_ ( k x. x ) ) ) |
31 |
30
|
impr |
|- ( ( ( x e. RR /\ k e. NN ) /\ ( n e. ZZ /\ ( n / k ) < x ) ) -> n <_ ( k x. x ) ) |
32 |
25 31
|
sylan2b |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. T ) -> n <_ ( k x. x ) ) |
33 |
32
|
ralrimiva |
|- ( ( x e. RR /\ k e. NN ) -> A. n e. T n <_ ( k x. x ) ) |
34 |
|
brralrspcev |
|- ( ( ( k x. x ) e. RR /\ A. n e. T n <_ ( k x. x ) ) -> E. y e. RR A. n e. T n <_ y ) |
35 |
7 33 34
|
syl2anc |
|- ( ( x e. RR /\ k e. NN ) -> E. y e. RR A. n e. T n <_ y ) |
36 |
|
suprzcl |
|- ( ( T C_ ZZ /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) -> sup ( T , RR , < ) e. T ) |
37 |
3 24 35 36
|
mp3an2i |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. T ) |
38 |
3 37
|
sselid |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |