Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
|- T = { n e. ZZ | ( n / k ) < x } |
2 |
|
rpnnen1lem.2 |
|- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
3 |
|
rpnnen1lem.n |
|- NN e. _V |
4 |
|
rpnnen1lem.q |
|- QQ e. _V |
5 |
3
|
mptex |
|- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V |
6 |
2
|
fvmpt2 |
|- ( ( x e. RR /\ ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V ) -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
7 |
5 6
|
mpan2 |
|- ( x e. RR -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
8 |
7
|
fveq1d |
|- ( x e. RR -> ( ( F ` x ) ` k ) = ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) ) |
9 |
|
ovex |
|- ( sup ( T , RR , < ) / k ) e. _V |
10 |
|
eqid |
|- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) |
11 |
10
|
fvmpt2 |
|- ( ( k e. NN /\ ( sup ( T , RR , < ) / k ) e. _V ) -> ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
12 |
9 11
|
mpan2 |
|- ( k e. NN -> ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
13 |
8 12
|
sylan9eq |
|- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
14 |
1
|
rabeq2i |
|- ( n e. T <-> ( n e. ZZ /\ ( n / k ) < x ) ) |
15 |
|
zre |
|- ( n e. ZZ -> n e. RR ) |
16 |
15
|
adantl |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> n e. RR ) |
17 |
|
simpll |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> x e. RR ) |
18 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
19 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
20 |
18 19
|
jca |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
21 |
20
|
ad2antlr |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k e. RR /\ 0 < k ) ) |
22 |
|
ltdivmul |
|- ( ( n e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
23 |
16 17 21 22
|
syl3anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
24 |
18
|
ad2antlr |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> k e. RR ) |
25 |
|
remulcl |
|- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
26 |
24 17 25
|
syl2anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k x. x ) e. RR ) |
27 |
|
ltle |
|- ( ( n e. RR /\ ( k x. x ) e. RR ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
28 |
16 26 27
|
syl2anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
29 |
23 28
|
sylbid |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x -> n <_ ( k x. x ) ) ) |
30 |
29
|
impr |
|- ( ( ( x e. RR /\ k e. NN ) /\ ( n e. ZZ /\ ( n / k ) < x ) ) -> n <_ ( k x. x ) ) |
31 |
14 30
|
sylan2b |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. T ) -> n <_ ( k x. x ) ) |
32 |
31
|
ralrimiva |
|- ( ( x e. RR /\ k e. NN ) -> A. n e. T n <_ ( k x. x ) ) |
33 |
|
ssrab2 |
|- { n e. ZZ | ( n / k ) < x } C_ ZZ |
34 |
1 33
|
eqsstri |
|- T C_ ZZ |
35 |
|
zssre |
|- ZZ C_ RR |
36 |
34 35
|
sstri |
|- T C_ RR |
37 |
36
|
a1i |
|- ( ( x e. RR /\ k e. NN ) -> T C_ RR ) |
38 |
25
|
ancoms |
|- ( ( x e. RR /\ k e. RR ) -> ( k x. x ) e. RR ) |
39 |
18 38
|
sylan2 |
|- ( ( x e. RR /\ k e. NN ) -> ( k x. x ) e. RR ) |
40 |
|
btwnz |
|- ( ( k x. x ) e. RR -> ( E. n e. ZZ n < ( k x. x ) /\ E. n e. ZZ ( k x. x ) < n ) ) |
41 |
40
|
simpld |
|- ( ( k x. x ) e. RR -> E. n e. ZZ n < ( k x. x ) ) |
42 |
39 41
|
syl |
|- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ n < ( k x. x ) ) |
43 |
23
|
rexbidva |
|- ( ( x e. RR /\ k e. NN ) -> ( E. n e. ZZ ( n / k ) < x <-> E. n e. ZZ n < ( k x. x ) ) ) |
44 |
42 43
|
mpbird |
|- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ ( n / k ) < x ) |
45 |
|
rabn0 |
|- ( { n e. ZZ | ( n / k ) < x } =/= (/) <-> E. n e. ZZ ( n / k ) < x ) |
46 |
44 45
|
sylibr |
|- ( ( x e. RR /\ k e. NN ) -> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
47 |
1
|
neeq1i |
|- ( T =/= (/) <-> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
48 |
46 47
|
sylibr |
|- ( ( x e. RR /\ k e. NN ) -> T =/= (/) ) |
49 |
|
breq2 |
|- ( y = ( k x. x ) -> ( n <_ y <-> n <_ ( k x. x ) ) ) |
50 |
49
|
ralbidv |
|- ( y = ( k x. x ) -> ( A. n e. T n <_ y <-> A. n e. T n <_ ( k x. x ) ) ) |
51 |
50
|
rspcev |
|- ( ( ( k x. x ) e. RR /\ A. n e. T n <_ ( k x. x ) ) -> E. y e. RR A. n e. T n <_ y ) |
52 |
39 32 51
|
syl2anc |
|- ( ( x e. RR /\ k e. NN ) -> E. y e. RR A. n e. T n <_ y ) |
53 |
|
suprleub |
|- ( ( ( T C_ RR /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) /\ ( k x. x ) e. RR ) -> ( sup ( T , RR , < ) <_ ( k x. x ) <-> A. n e. T n <_ ( k x. x ) ) ) |
54 |
37 48 52 39 53
|
syl31anc |
|- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) <_ ( k x. x ) <-> A. n e. T n <_ ( k x. x ) ) ) |
55 |
32 54
|
mpbird |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) <_ ( k x. x ) ) |
56 |
1 2
|
rpnnen1lem2 |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |
57 |
56
|
zred |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. RR ) |
58 |
|
simpl |
|- ( ( x e. RR /\ k e. NN ) -> x e. RR ) |
59 |
20
|
adantl |
|- ( ( x e. RR /\ k e. NN ) -> ( k e. RR /\ 0 < k ) ) |
60 |
|
ledivmul |
|- ( ( sup ( T , RR , < ) e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( sup ( T , RR , < ) / k ) <_ x <-> sup ( T , RR , < ) <_ ( k x. x ) ) ) |
61 |
57 58 59 60
|
syl3anc |
|- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( T , RR , < ) / k ) <_ x <-> sup ( T , RR , < ) <_ ( k x. x ) ) ) |
62 |
55 61
|
mpbird |
|- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) / k ) <_ x ) |
63 |
13 62
|
eqbrtrd |
|- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) <_ x ) |
64 |
63
|
ralrimiva |
|- ( x e. RR -> A. k e. NN ( ( F ` x ) ` k ) <_ x ) |
65 |
1 2 3 4
|
rpnnen1lem1 |
|- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |
66 |
4 3
|
elmap |
|- ( ( F ` x ) e. ( QQ ^m NN ) <-> ( F ` x ) : NN --> QQ ) |
67 |
65 66
|
sylib |
|- ( x e. RR -> ( F ` x ) : NN --> QQ ) |
68 |
|
ffn |
|- ( ( F ` x ) : NN --> QQ -> ( F ` x ) Fn NN ) |
69 |
|
breq1 |
|- ( n = ( ( F ` x ) ` k ) -> ( n <_ x <-> ( ( F ` x ) ` k ) <_ x ) ) |
70 |
69
|
ralrn |
|- ( ( F ` x ) Fn NN -> ( A. n e. ran ( F ` x ) n <_ x <-> A. k e. NN ( ( F ` x ) ` k ) <_ x ) ) |
71 |
67 68 70
|
3syl |
|- ( x e. RR -> ( A. n e. ran ( F ` x ) n <_ x <-> A. k e. NN ( ( F ` x ) ` k ) <_ x ) ) |
72 |
64 71
|
mpbird |
|- ( x e. RR -> A. n e. ran ( F ` x ) n <_ x ) |