Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
|- T = { n e. ZZ | ( n / k ) < x } |
2 |
|
rpnnen1lem.2 |
|- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
3 |
|
rpnnen1lem.n |
|- NN e. _V |
4 |
|
rpnnen1lem.q |
|- QQ e. _V |
5 |
1 2 3 4
|
rpnnen1lem3 |
|- ( x e. RR -> A. n e. ran ( F ` x ) n <_ x ) |
6 |
1 2 3 4
|
rpnnen1lem1 |
|- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |
7 |
4 3
|
elmap |
|- ( ( F ` x ) e. ( QQ ^m NN ) <-> ( F ` x ) : NN --> QQ ) |
8 |
6 7
|
sylib |
|- ( x e. RR -> ( F ` x ) : NN --> QQ ) |
9 |
|
frn |
|- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) C_ QQ ) |
10 |
|
qssre |
|- QQ C_ RR |
11 |
9 10
|
sstrdi |
|- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) C_ RR ) |
12 |
8 11
|
syl |
|- ( x e. RR -> ran ( F ` x ) C_ RR ) |
13 |
|
1nn |
|- 1 e. NN |
14 |
13
|
ne0ii |
|- NN =/= (/) |
15 |
|
fdm |
|- ( ( F ` x ) : NN --> QQ -> dom ( F ` x ) = NN ) |
16 |
15
|
neeq1d |
|- ( ( F ` x ) : NN --> QQ -> ( dom ( F ` x ) =/= (/) <-> NN =/= (/) ) ) |
17 |
14 16
|
mpbiri |
|- ( ( F ` x ) : NN --> QQ -> dom ( F ` x ) =/= (/) ) |
18 |
|
dm0rn0 |
|- ( dom ( F ` x ) = (/) <-> ran ( F ` x ) = (/) ) |
19 |
18
|
necon3bii |
|- ( dom ( F ` x ) =/= (/) <-> ran ( F ` x ) =/= (/) ) |
20 |
17 19
|
sylib |
|- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) =/= (/) ) |
21 |
8 20
|
syl |
|- ( x e. RR -> ran ( F ` x ) =/= (/) ) |
22 |
|
breq2 |
|- ( y = x -> ( n <_ y <-> n <_ x ) ) |
23 |
22
|
ralbidv |
|- ( y = x -> ( A. n e. ran ( F ` x ) n <_ y <-> A. n e. ran ( F ` x ) n <_ x ) ) |
24 |
23
|
rspcev |
|- ( ( x e. RR /\ A. n e. ran ( F ` x ) n <_ x ) -> E. y e. RR A. n e. ran ( F ` x ) n <_ y ) |
25 |
5 24
|
mpdan |
|- ( x e. RR -> E. y e. RR A. n e. ran ( F ` x ) n <_ y ) |
26 |
|
id |
|- ( x e. RR -> x e. RR ) |
27 |
|
suprleub |
|- ( ( ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) /\ x e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) <_ x <-> A. n e. ran ( F ` x ) n <_ x ) ) |
28 |
12 21 25 26 27
|
syl31anc |
|- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) <_ x <-> A. n e. ran ( F ` x ) n <_ x ) ) |
29 |
5 28
|
mpbird |
|- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) <_ x ) |
30 |
1 2 3 4
|
rpnnen1lem4 |
|- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
31 |
|
resubcl |
|- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) e. RR ) -> ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR ) |
32 |
30 31
|
mpdan |
|- ( x e. RR -> ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR ) |
33 |
32
|
adantr |
|- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR ) |
34 |
|
posdif |
|- ( ( sup ( ran ( F ` x ) , RR , < ) e. RR /\ x e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) < x <-> 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
35 |
30 34
|
mpancom |
|- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) < x <-> 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
36 |
35
|
biimpa |
|- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) |
37 |
36
|
gt0ne0d |
|- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> ( x - sup ( ran ( F ` x ) , RR , < ) ) =/= 0 ) |
38 |
33 37
|
rereccld |
|- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) e. RR ) |
39 |
|
arch |
|- ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) e. RR -> E. k e. NN ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) |
40 |
38 39
|
syl |
|- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> E. k e. NN ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) |
41 |
40
|
ex |
|- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) < x -> E. k e. NN ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) ) |
42 |
1 2
|
rpnnen1lem2 |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |
43 |
42
|
zred |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. RR ) |
44 |
43
|
3adant3 |
|- ( ( x e. RR /\ k e. NN /\ ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) -> sup ( T , RR , < ) e. RR ) |
45 |
44
|
ltp1d |
|- ( ( x e. RR /\ k e. NN /\ ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) -> sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) |
46 |
33 36
|
jca |
|- ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) -> ( ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR /\ 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
47 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
48 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
49 |
47 48
|
jca |
|- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
50 |
|
ltrec1 |
|- ( ( ( ( x - sup ( ran ( F ` x ) , RR , < ) ) e. RR /\ 0 < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) /\ ( k e. RR /\ 0 < k ) ) -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k <-> ( 1 / k ) < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
51 |
46 49 50
|
syl2an |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k <-> ( 1 / k ) < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
52 |
30
|
ad2antrr |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
53 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
54 |
53
|
adantl |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( 1 / k ) e. RR ) |
55 |
|
simpll |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> x e. RR ) |
56 |
52 54 55
|
ltaddsub2d |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x <-> ( 1 / k ) < ( x - sup ( ran ( F ` x ) , RR , < ) ) ) ) |
57 |
12
|
adantr |
|- ( ( x e. RR /\ k e. NN ) -> ran ( F ` x ) C_ RR ) |
58 |
|
ffn |
|- ( ( F ` x ) : NN --> QQ -> ( F ` x ) Fn NN ) |
59 |
8 58
|
syl |
|- ( x e. RR -> ( F ` x ) Fn NN ) |
60 |
|
fnfvelrn |
|- ( ( ( F ` x ) Fn NN /\ k e. NN ) -> ( ( F ` x ) ` k ) e. ran ( F ` x ) ) |
61 |
59 60
|
sylan |
|- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) e. ran ( F ` x ) ) |
62 |
57 61
|
sseldd |
|- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) e. RR ) |
63 |
30
|
adantr |
|- ( ( x e. RR /\ k e. NN ) -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
64 |
53
|
adantl |
|- ( ( x e. RR /\ k e. NN ) -> ( 1 / k ) e. RR ) |
65 |
12 21 25
|
3jca |
|- ( x e. RR -> ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) ) |
66 |
65
|
adantr |
|- ( ( x e. RR /\ k e. NN ) -> ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) ) |
67 |
|
suprub |
|- ( ( ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) /\ ( ( F ` x ) ` k ) e. ran ( F ` x ) ) -> ( ( F ` x ) ` k ) <_ sup ( ran ( F ` x ) , RR , < ) ) |
68 |
66 61 67
|
syl2anc |
|- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) <_ sup ( ran ( F ` x ) , RR , < ) ) |
69 |
62 63 64 68
|
leadd1dd |
|- ( ( x e. RR /\ k e. NN ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) <_ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) ) |
70 |
62 64
|
readdcld |
|- ( ( x e. RR /\ k e. NN ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) e. RR ) |
71 |
|
readdcl |
|- ( ( sup ( ran ( F ` x ) , RR , < ) e. RR /\ ( 1 / k ) e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) e. RR ) |
72 |
30 53 71
|
syl2an |
|- ( ( x e. RR /\ k e. NN ) -> ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) e. RR ) |
73 |
|
simpl |
|- ( ( x e. RR /\ k e. NN ) -> x e. RR ) |
74 |
|
lelttr |
|- ( ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) e. RR /\ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) e. RR /\ x e. RR ) -> ( ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) <_ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) /\ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
75 |
74
|
expd |
|- ( ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) e. RR /\ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) e. RR /\ x e. RR ) -> ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) <_ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) ) |
76 |
70 72 73 75
|
syl3anc |
|- ( ( x e. RR /\ k e. NN ) -> ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) <_ ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) ) |
77 |
69 76
|
mpd |
|- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
78 |
77
|
adantlr |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( sup ( ran ( F ` x ) , RR , < ) + ( 1 / k ) ) < x -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
79 |
56 78
|
sylbird |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( 1 / k ) < ( x - sup ( ran ( F ` x ) , RR , < ) ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
80 |
51 79
|
sylbid |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
81 |
42
|
peano2zd |
|- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) + 1 ) e. ZZ ) |
82 |
|
oveq1 |
|- ( n = ( sup ( T , RR , < ) + 1 ) -> ( n / k ) = ( ( sup ( T , RR , < ) + 1 ) / k ) ) |
83 |
82
|
breq1d |
|- ( n = ( sup ( T , RR , < ) + 1 ) -> ( ( n / k ) < x <-> ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) ) |
84 |
83 1
|
elrab2 |
|- ( ( sup ( T , RR , < ) + 1 ) e. T <-> ( ( sup ( T , RR , < ) + 1 ) e. ZZ /\ ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) ) |
85 |
84
|
biimpri |
|- ( ( ( sup ( T , RR , < ) + 1 ) e. ZZ /\ ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) -> ( sup ( T , RR , < ) + 1 ) e. T ) |
86 |
81 85
|
sylan |
|- ( ( ( x e. RR /\ k e. NN ) /\ ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) -> ( sup ( T , RR , < ) + 1 ) e. T ) |
87 |
|
ssrab2 |
|- { n e. ZZ | ( n / k ) < x } C_ ZZ |
88 |
1 87
|
eqsstri |
|- T C_ ZZ |
89 |
|
zssre |
|- ZZ C_ RR |
90 |
88 89
|
sstri |
|- T C_ RR |
91 |
90
|
a1i |
|- ( ( x e. RR /\ k e. NN ) -> T C_ RR ) |
92 |
|
remulcl |
|- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
93 |
92
|
ancoms |
|- ( ( x e. RR /\ k e. RR ) -> ( k x. x ) e. RR ) |
94 |
47 93
|
sylan2 |
|- ( ( x e. RR /\ k e. NN ) -> ( k x. x ) e. RR ) |
95 |
|
btwnz |
|- ( ( k x. x ) e. RR -> ( E. n e. ZZ n < ( k x. x ) /\ E. n e. ZZ ( k x. x ) < n ) ) |
96 |
95
|
simpld |
|- ( ( k x. x ) e. RR -> E. n e. ZZ n < ( k x. x ) ) |
97 |
94 96
|
syl |
|- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ n < ( k x. x ) ) |
98 |
|
zre |
|- ( n e. ZZ -> n e. RR ) |
99 |
98
|
adantl |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> n e. RR ) |
100 |
|
simpll |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> x e. RR ) |
101 |
49
|
ad2antlr |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k e. RR /\ 0 < k ) ) |
102 |
|
ltdivmul |
|- ( ( n e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
103 |
99 100 101 102
|
syl3anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
104 |
103
|
rexbidva |
|- ( ( x e. RR /\ k e. NN ) -> ( E. n e. ZZ ( n / k ) < x <-> E. n e. ZZ n < ( k x. x ) ) ) |
105 |
97 104
|
mpbird |
|- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ ( n / k ) < x ) |
106 |
|
rabn0 |
|- ( { n e. ZZ | ( n / k ) < x } =/= (/) <-> E. n e. ZZ ( n / k ) < x ) |
107 |
105 106
|
sylibr |
|- ( ( x e. RR /\ k e. NN ) -> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
108 |
1
|
neeq1i |
|- ( T =/= (/) <-> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
109 |
107 108
|
sylibr |
|- ( ( x e. RR /\ k e. NN ) -> T =/= (/) ) |
110 |
1
|
rabeq2i |
|- ( n e. T <-> ( n e. ZZ /\ ( n / k ) < x ) ) |
111 |
47
|
ad2antlr |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> k e. RR ) |
112 |
111 100 92
|
syl2anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k x. x ) e. RR ) |
113 |
|
ltle |
|- ( ( n e. RR /\ ( k x. x ) e. RR ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
114 |
99 112 113
|
syl2anc |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
115 |
103 114
|
sylbid |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x -> n <_ ( k x. x ) ) ) |
116 |
115
|
impr |
|- ( ( ( x e. RR /\ k e. NN ) /\ ( n e. ZZ /\ ( n / k ) < x ) ) -> n <_ ( k x. x ) ) |
117 |
110 116
|
sylan2b |
|- ( ( ( x e. RR /\ k e. NN ) /\ n e. T ) -> n <_ ( k x. x ) ) |
118 |
117
|
ralrimiva |
|- ( ( x e. RR /\ k e. NN ) -> A. n e. T n <_ ( k x. x ) ) |
119 |
|
breq2 |
|- ( y = ( k x. x ) -> ( n <_ y <-> n <_ ( k x. x ) ) ) |
120 |
119
|
ralbidv |
|- ( y = ( k x. x ) -> ( A. n e. T n <_ y <-> A. n e. T n <_ ( k x. x ) ) ) |
121 |
120
|
rspcev |
|- ( ( ( k x. x ) e. RR /\ A. n e. T n <_ ( k x. x ) ) -> E. y e. RR A. n e. T n <_ y ) |
122 |
94 118 121
|
syl2anc |
|- ( ( x e. RR /\ k e. NN ) -> E. y e. RR A. n e. T n <_ y ) |
123 |
91 109 122
|
3jca |
|- ( ( x e. RR /\ k e. NN ) -> ( T C_ RR /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) ) |
124 |
|
suprub |
|- ( ( ( T C_ RR /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) /\ ( sup ( T , RR , < ) + 1 ) e. T ) -> ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) ) |
125 |
123 124
|
sylan |
|- ( ( ( x e. RR /\ k e. NN ) /\ ( sup ( T , RR , < ) + 1 ) e. T ) -> ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) ) |
126 |
86 125
|
syldan |
|- ( ( ( x e. RR /\ k e. NN ) /\ ( ( sup ( T , RR , < ) + 1 ) / k ) < x ) -> ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) ) |
127 |
126
|
ex |
|- ( ( x e. RR /\ k e. NN ) -> ( ( ( sup ( T , RR , < ) + 1 ) / k ) < x -> ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) ) ) |
128 |
42
|
zcnd |
|- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. CC ) |
129 |
|
1cnd |
|- ( ( x e. RR /\ k e. NN ) -> 1 e. CC ) |
130 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
131 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
132 |
130 131
|
jca |
|- ( k e. NN -> ( k e. CC /\ k =/= 0 ) ) |
133 |
132
|
adantl |
|- ( ( x e. RR /\ k e. NN ) -> ( k e. CC /\ k =/= 0 ) ) |
134 |
|
divdir |
|- ( ( sup ( T , RR , < ) e. CC /\ 1 e. CC /\ ( k e. CC /\ k =/= 0 ) ) -> ( ( sup ( T , RR , < ) + 1 ) / k ) = ( ( sup ( T , RR , < ) / k ) + ( 1 / k ) ) ) |
135 |
128 129 133 134
|
syl3anc |
|- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( T , RR , < ) + 1 ) / k ) = ( ( sup ( T , RR , < ) / k ) + ( 1 / k ) ) ) |
136 |
3
|
mptex |
|- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V |
137 |
2
|
fvmpt2 |
|- ( ( x e. RR /\ ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V ) -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
138 |
136 137
|
mpan2 |
|- ( x e. RR -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
139 |
138
|
fveq1d |
|- ( x e. RR -> ( ( F ` x ) ` k ) = ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) ) |
140 |
|
ovex |
|- ( sup ( T , RR , < ) / k ) e. _V |
141 |
|
eqid |
|- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) |
142 |
141
|
fvmpt2 |
|- ( ( k e. NN /\ ( sup ( T , RR , < ) / k ) e. _V ) -> ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
143 |
140 142
|
mpan2 |
|- ( k e. NN -> ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
144 |
139 143
|
sylan9eq |
|- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
145 |
144
|
oveq1d |
|- ( ( x e. RR /\ k e. NN ) -> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) = ( ( sup ( T , RR , < ) / k ) + ( 1 / k ) ) ) |
146 |
135 145
|
eqtr4d |
|- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( T , RR , < ) + 1 ) / k ) = ( ( ( F ` x ) ` k ) + ( 1 / k ) ) ) |
147 |
146
|
breq1d |
|- ( ( x e. RR /\ k e. NN ) -> ( ( ( sup ( T , RR , < ) + 1 ) / k ) < x <-> ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x ) ) |
148 |
81
|
zred |
|- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) + 1 ) e. RR ) |
149 |
148 43
|
lenltd |
|- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( T , RR , < ) + 1 ) <_ sup ( T , RR , < ) <-> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
150 |
127 147 149
|
3imtr3d |
|- ( ( x e. RR /\ k e. NN ) -> ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
151 |
150
|
adantlr |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( ( ( F ` x ) ` k ) + ( 1 / k ) ) < x -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
152 |
80 151
|
syld |
|- ( ( ( x e. RR /\ sup ( ran ( F ` x ) , RR , < ) < x ) /\ k e. NN ) -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
153 |
152
|
exp31 |
|- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) < x -> ( k e. NN -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
154 |
153
|
com4l |
|- ( sup ( ran ( F ` x ) , RR , < ) < x -> ( k e. NN -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> ( x e. RR -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
155 |
154
|
com14 |
|- ( x e. RR -> ( k e. NN -> ( ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> ( sup ( ran ( F ` x ) , RR , < ) < x -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
156 |
155
|
3imp |
|- ( ( x e. RR /\ k e. NN /\ ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) -> ( sup ( ran ( F ` x ) , RR , < ) < x -> -. sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) ) |
157 |
45 156
|
mt2d |
|- ( ( x e. RR /\ k e. NN /\ ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k ) -> -. sup ( ran ( F ` x ) , RR , < ) < x ) |
158 |
157
|
rexlimdv3a |
|- ( x e. RR -> ( E. k e. NN ( 1 / ( x - sup ( ran ( F ` x ) , RR , < ) ) ) < k -> -. sup ( ran ( F ` x ) , RR , < ) < x ) ) |
159 |
41 158
|
syld |
|- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) < x -> -. sup ( ran ( F ` x ) , RR , < ) < x ) ) |
160 |
159
|
pm2.01d |
|- ( x e. RR -> -. sup ( ran ( F ` x ) , RR , < ) < x ) |
161 |
|
eqlelt |
|- ( ( sup ( ran ( F ` x ) , RR , < ) e. RR /\ x e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) = x <-> ( sup ( ran ( F ` x ) , RR , < ) <_ x /\ -. sup ( ran ( F ` x ) , RR , < ) < x ) ) ) |
162 |
30 161
|
mpancom |
|- ( x e. RR -> ( sup ( ran ( F ` x ) , RR , < ) = x <-> ( sup ( ran ( F ` x ) , RR , < ) <_ x /\ -. sup ( ran ( F ` x ) , RR , < ) < x ) ) ) |
163 |
29 160 162
|
mpbir2and |
|- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) = x ) |