Metamath Proof Explorer


Theorem rpnnen1lem6

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 15-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1
|- T = { n e. ZZ | ( n / k ) < x }
rpnnen1lem.2
|- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) )
rpnnen1lem.n
|- NN e. _V
rpnnen1lem.q
|- QQ e. _V
Assertion rpnnen1lem6
|- RR ~<_ ( QQ ^m NN )

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1
 |-  T = { n e. ZZ | ( n / k ) < x }
2 rpnnen1lem.2
 |-  F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) )
3 rpnnen1lem.n
 |-  NN e. _V
4 rpnnen1lem.q
 |-  QQ e. _V
5 ovex
 |-  ( QQ ^m NN ) e. _V
6 1 2 3 4 rpnnen1lem1
 |-  ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) )
7 rneq
 |-  ( ( F ` x ) = ( F ` y ) -> ran ( F ` x ) = ran ( F ` y ) )
8 7 supeq1d
 |-  ( ( F ` x ) = ( F ` y ) -> sup ( ran ( F ` x ) , RR , < ) = sup ( ran ( F ` y ) , RR , < ) )
9 1 2 3 4 rpnnen1lem5
 |-  ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) = x )
10 fveq2
 |-  ( x = y -> ( F ` x ) = ( F ` y ) )
11 10 rneqd
 |-  ( x = y -> ran ( F ` x ) = ran ( F ` y ) )
12 11 supeq1d
 |-  ( x = y -> sup ( ran ( F ` x ) , RR , < ) = sup ( ran ( F ` y ) , RR , < ) )
13 id
 |-  ( x = y -> x = y )
14 12 13 eqeq12d
 |-  ( x = y -> ( sup ( ran ( F ` x ) , RR , < ) = x <-> sup ( ran ( F ` y ) , RR , < ) = y ) )
15 14 9 vtoclga
 |-  ( y e. RR -> sup ( ran ( F ` y ) , RR , < ) = y )
16 9 15 eqeqan12d
 |-  ( ( x e. RR /\ y e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) = sup ( ran ( F ` y ) , RR , < ) <-> x = y ) )
17 8 16 syl5ib
 |-  ( ( x e. RR /\ y e. RR ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) )
18 17 10 impbid1
 |-  ( ( x e. RR /\ y e. RR ) -> ( ( F ` x ) = ( F ` y ) <-> x = y ) )
19 6 18 dom2
 |-  ( ( QQ ^m NN ) e. _V -> RR ~<_ ( QQ ^m NN ) )
20 5 19 ax-mp
 |-  RR ~<_ ( QQ ^m NN )