Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
rpnnen2.2 |
|- ( ph -> A C_ NN ) |
3 |
|
rpnnen2.3 |
|- ( ph -> B C_ NN ) |
4 |
|
rpnnen2.4 |
|- ( ph -> m e. ( A \ B ) ) |
5 |
|
rpnnen2.5 |
|- ( ph -> A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) ) |
6 |
|
rpnnen2.6 |
|- ( ps <-> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
7 |
|
simpr |
|- ( ( ph /\ ps ) -> ps ) |
8 |
7 6
|
sylib |
|- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
9 |
|
eldifi |
|- ( m e. ( A \ B ) -> m e. A ) |
10 |
|
ssel2 |
|- ( ( A C_ NN /\ m e. A ) -> m e. NN ) |
11 |
9 10
|
sylan2 |
|- ( ( A C_ NN /\ m e. ( A \ B ) ) -> m e. NN ) |
12 |
2 4 11
|
syl2anc |
|- ( ph -> m e. NN ) |
13 |
1
|
rpnnen2lem8 |
|- ( ( A C_ NN /\ m e. NN ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
14 |
2 12 13
|
syl2anc |
|- ( ph -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
15 |
|
1z |
|- 1 e. ZZ |
16 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
17 |
|
elfzm11 |
|- ( ( 1 e. ZZ /\ m e. ZZ ) -> ( k e. ( 1 ... ( m - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) ) |
18 |
15 16 17
|
sylancr |
|- ( m e. NN -> ( k e. ( 1 ... ( m - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) ) |
19 |
18
|
biimpa |
|- ( ( m e. NN /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) |
20 |
12 19
|
sylan |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) |
21 |
20
|
simp3d |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> k < m ) |
22 |
|
elfznn |
|- ( k e. ( 1 ... ( m - 1 ) ) -> k e. NN ) |
23 |
|
breq1 |
|- ( n = k -> ( n < m <-> k < m ) ) |
24 |
|
eleq1w |
|- ( n = k -> ( n e. A <-> k e. A ) ) |
25 |
|
eleq1w |
|- ( n = k -> ( n e. B <-> k e. B ) ) |
26 |
24 25
|
bibi12d |
|- ( n = k -> ( ( n e. A <-> n e. B ) <-> ( k e. A <-> k e. B ) ) ) |
27 |
23 26
|
imbi12d |
|- ( n = k -> ( ( n < m -> ( n e. A <-> n e. B ) ) <-> ( k < m -> ( k e. A <-> k e. B ) ) ) ) |
28 |
27
|
rspccva |
|- ( ( A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) /\ k e. NN ) -> ( k < m -> ( k e. A <-> k e. B ) ) ) |
29 |
5 22 28
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k < m -> ( k e. A <-> k e. B ) ) ) |
30 |
21 29
|
mpd |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. A <-> k e. B ) ) |
31 |
30
|
ifbid |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
32 |
1
|
rpnnen2lem1 |
|- ( ( A C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
33 |
2 22 32
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` A ) ` k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
34 |
1
|
rpnnen2lem1 |
|- ( ( B C_ NN /\ k e. NN ) -> ( ( F ` B ) ` k ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
35 |
3 22 34
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` B ) ` k ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
36 |
31 33 35
|
3eqtr4d |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` A ) ` k ) = ( ( F ` B ) ` k ) ) |
37 |
36
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) = sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) ) |
38 |
37
|
oveq1d |
|- ( ph -> ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
39 |
14 38
|
eqtrd |
|- ( ph -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
40 |
39
|
adantr |
|- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
41 |
1
|
rpnnen2lem8 |
|- ( ( B C_ NN /\ m e. NN ) -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
42 |
3 12 41
|
syl2anc |
|- ( ph -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
44 |
8 40 43
|
3eqtr3d |
|- ( ( ph /\ ps ) -> ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
45 |
1
|
rpnnen2lem6 |
|- ( ( A C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
46 |
2 12 45
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
47 |
1
|
rpnnen2lem6 |
|- ( ( B C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
48 |
3 12 47
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
49 |
|
fzfid |
|- ( ph -> ( 1 ... ( m - 1 ) ) e. Fin ) |
50 |
1
|
rpnnen2lem2 |
|- ( B C_ NN -> ( F ` B ) : NN --> RR ) |
51 |
3 50
|
syl |
|- ( ph -> ( F ` B ) : NN --> RR ) |
52 |
|
ffvelrn |
|- ( ( ( F ` B ) : NN --> RR /\ k e. NN ) -> ( ( F ` B ) ` k ) e. RR ) |
53 |
51 22 52
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` B ) ` k ) e. RR ) |
54 |
49 53
|
fsumrecl |
|- ( ph -> sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) e. RR ) |
55 |
|
readdcan |
|- ( ( sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR /\ sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR /\ sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) e. RR ) -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
56 |
46 48 54 55
|
syl3anc |
|- ( ph -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
57 |
56
|
adantr |
|- ( ( ph /\ ps ) -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
58 |
44 57
|
mpbid |
|- ( ( ph /\ ps ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) |