| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
| 2 |
|
rpnnen2.2 |
|- ( ph -> A C_ NN ) |
| 3 |
|
rpnnen2.3 |
|- ( ph -> B C_ NN ) |
| 4 |
|
rpnnen2.4 |
|- ( ph -> m e. ( A \ B ) ) |
| 5 |
|
rpnnen2.5 |
|- ( ph -> A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) ) |
| 6 |
|
rpnnen2.6 |
|- ( ps <-> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
| 7 |
|
simpr |
|- ( ( ph /\ ps ) -> ps ) |
| 8 |
7 6
|
sylib |
|- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
| 9 |
|
eldifi |
|- ( m e. ( A \ B ) -> m e. A ) |
| 10 |
|
ssel2 |
|- ( ( A C_ NN /\ m e. A ) -> m e. NN ) |
| 11 |
9 10
|
sylan2 |
|- ( ( A C_ NN /\ m e. ( A \ B ) ) -> m e. NN ) |
| 12 |
2 4 11
|
syl2anc |
|- ( ph -> m e. NN ) |
| 13 |
1
|
rpnnen2lem8 |
|- ( ( A C_ NN /\ m e. NN ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 14 |
2 12 13
|
syl2anc |
|- ( ph -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 15 |
|
1z |
|- 1 e. ZZ |
| 16 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
| 17 |
|
elfzm11 |
|- ( ( 1 e. ZZ /\ m e. ZZ ) -> ( k e. ( 1 ... ( m - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) ) |
| 18 |
15 16 17
|
sylancr |
|- ( m e. NN -> ( k e. ( 1 ... ( m - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) ) |
| 19 |
18
|
biimpa |
|- ( ( m e. NN /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) |
| 20 |
12 19
|
sylan |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. ZZ /\ 1 <_ k /\ k < m ) ) |
| 21 |
20
|
simp3d |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> k < m ) |
| 22 |
|
elfznn |
|- ( k e. ( 1 ... ( m - 1 ) ) -> k e. NN ) |
| 23 |
|
breq1 |
|- ( n = k -> ( n < m <-> k < m ) ) |
| 24 |
|
eleq1w |
|- ( n = k -> ( n e. A <-> k e. A ) ) |
| 25 |
|
eleq1w |
|- ( n = k -> ( n e. B <-> k e. B ) ) |
| 26 |
24 25
|
bibi12d |
|- ( n = k -> ( ( n e. A <-> n e. B ) <-> ( k e. A <-> k e. B ) ) ) |
| 27 |
23 26
|
imbi12d |
|- ( n = k -> ( ( n < m -> ( n e. A <-> n e. B ) ) <-> ( k < m -> ( k e. A <-> k e. B ) ) ) ) |
| 28 |
27
|
rspccva |
|- ( ( A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) /\ k e. NN ) -> ( k < m -> ( k e. A <-> k e. B ) ) ) |
| 29 |
5 22 28
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k < m -> ( k e. A <-> k e. B ) ) ) |
| 30 |
21 29
|
mpd |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k e. A <-> k e. B ) ) |
| 31 |
30
|
ifbid |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 32 |
1
|
rpnnen2lem1 |
|- ( ( A C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 33 |
2 22 32
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` A ) ` k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 34 |
1
|
rpnnen2lem1 |
|- ( ( B C_ NN /\ k e. NN ) -> ( ( F ` B ) ` k ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 35 |
3 22 34
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` B ) ` k ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 36 |
31 33 35
|
3eqtr4d |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` A ) ` k ) = ( ( F ` B ) ` k ) ) |
| 37 |
36
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) = sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) ) |
| 38 |
37
|
oveq1d |
|- ( ph -> ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 39 |
14 38
|
eqtrd |
|- ( ph -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) ) |
| 41 |
1
|
rpnnen2lem8 |
|- ( ( B C_ NN /\ m e. NN ) -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 42 |
3 12 41
|
syl2anc |
|- ( ph -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ ps ) -> sum_ k e. NN ( ( F ` B ) ` k ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 44 |
8 40 43
|
3eqtr3d |
|- ( ( ph /\ ps ) -> ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 45 |
1
|
rpnnen2lem6 |
|- ( ( A C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
| 46 |
2 12 45
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
| 47 |
1
|
rpnnen2lem6 |
|- ( ( B C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
| 48 |
3 12 47
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
| 49 |
|
fzfid |
|- ( ph -> ( 1 ... ( m - 1 ) ) e. Fin ) |
| 50 |
1
|
rpnnen2lem2 |
|- ( B C_ NN -> ( F ` B ) : NN --> RR ) |
| 51 |
3 50
|
syl |
|- ( ph -> ( F ` B ) : NN --> RR ) |
| 52 |
|
ffvelcdm |
|- ( ( ( F ` B ) : NN --> RR /\ k e. NN ) -> ( ( F ` B ) ` k ) e. RR ) |
| 53 |
51 22 52
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( F ` B ) ` k ) e. RR ) |
| 54 |
49 53
|
fsumrecl |
|- ( ph -> sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) e. RR ) |
| 55 |
|
readdcan |
|- ( ( sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR /\ sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR /\ sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) e. RR ) -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 56 |
46 48 54 55
|
syl3anc |
|- ( ph -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ ps ) -> ( ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) = ( sum_ k e. ( 1 ... ( m - 1 ) ) ( ( F ` B ) ` k ) + sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) <-> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 58 |
44 57
|
mpbid |
|- ( ( ph /\ ps ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) |