Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
rpnnen2.2 |
|- ( ph -> A C_ NN ) |
3 |
|
rpnnen2.3 |
|- ( ph -> B C_ NN ) |
4 |
|
rpnnen2.4 |
|- ( ph -> m e. ( A \ B ) ) |
5 |
|
rpnnen2.5 |
|- ( ph -> A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) ) |
6 |
|
rpnnen2.6 |
|- ( ps <-> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
7 |
|
eldifi |
|- ( m e. ( A \ B ) -> m e. A ) |
8 |
|
ssel2 |
|- ( ( A C_ NN /\ m e. A ) -> m e. NN ) |
9 |
7 8
|
sylan2 |
|- ( ( A C_ NN /\ m e. ( A \ B ) ) -> m e. NN ) |
10 |
2 4 9
|
syl2anc |
|- ( ph -> m e. NN ) |
11 |
1
|
rpnnen2lem6 |
|- ( ( B C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
12 |
3 10 11
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
13 |
|
3nn |
|- 3 e. NN |
14 |
|
nnrecre |
|- ( 3 e. NN -> ( 1 / 3 ) e. RR ) |
15 |
13 14
|
ax-mp |
|- ( 1 / 3 ) e. RR |
16 |
10
|
nnnn0d |
|- ( ph -> m e. NN0 ) |
17 |
|
reexpcl |
|- ( ( ( 1 / 3 ) e. RR /\ m e. NN0 ) -> ( ( 1 / 3 ) ^ m ) e. RR ) |
18 |
15 16 17
|
sylancr |
|- ( ph -> ( ( 1 / 3 ) ^ m ) e. RR ) |
19 |
1
|
rpnnen2lem6 |
|- ( ( A C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
20 |
2 10 19
|
syl2anc |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
21 |
|
nnrp |
|- ( 3 e. NN -> 3 e. RR+ ) |
22 |
|
rpreccl |
|- ( 3 e. RR+ -> ( 1 / 3 ) e. RR+ ) |
23 |
13 21 22
|
mp2b |
|- ( 1 / 3 ) e. RR+ |
24 |
10
|
nnzd |
|- ( ph -> m e. ZZ ) |
25 |
|
rpexpcl |
|- ( ( ( 1 / 3 ) e. RR+ /\ m e. ZZ ) -> ( ( 1 / 3 ) ^ m ) e. RR+ ) |
26 |
23 24 25
|
sylancr |
|- ( ph -> ( ( 1 / 3 ) ^ m ) e. RR+ ) |
27 |
26
|
rpred |
|- ( ph -> ( ( 1 / 3 ) ^ m ) e. RR ) |
28 |
27
|
rehalfcld |
|- ( ph -> ( ( ( 1 / 3 ) ^ m ) / 2 ) e. RR ) |
29 |
4
|
snssd |
|- ( ph -> { m } C_ ( A \ B ) ) |
30 |
2
|
ssdifd |
|- ( ph -> ( A \ B ) C_ ( NN \ B ) ) |
31 |
29 30
|
sstrd |
|- ( ph -> { m } C_ ( NN \ B ) ) |
32 |
10
|
snssd |
|- ( ph -> { m } C_ NN ) |
33 |
|
ssconb |
|- ( ( B C_ NN /\ { m } C_ NN ) -> ( B C_ ( NN \ { m } ) <-> { m } C_ ( NN \ B ) ) ) |
34 |
3 32 33
|
syl2anc |
|- ( ph -> ( B C_ ( NN \ { m } ) <-> { m } C_ ( NN \ B ) ) ) |
35 |
31 34
|
mpbird |
|- ( ph -> B C_ ( NN \ { m } ) ) |
36 |
|
difssd |
|- ( ph -> ( NN \ { m } ) C_ NN ) |
37 |
1
|
rpnnen2lem7 |
|- ( ( B C_ ( NN \ { m } ) /\ ( NN \ { m } ) C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) ) |
38 |
35 36 10 37
|
syl3anc |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) ) |
39 |
1
|
rpnnen2lem9 |
|- ( m e. NN -> sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) = ( 0 + ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |
40 |
10 39
|
syl |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) = ( 0 + ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |
41 |
15
|
recni |
|- ( 1 / 3 ) e. CC |
42 |
|
expp1 |
|- ( ( ( 1 / 3 ) e. CC /\ m e. NN0 ) -> ( ( 1 / 3 ) ^ ( m + 1 ) ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
43 |
41 16 42
|
sylancr |
|- ( ph -> ( ( 1 / 3 ) ^ ( m + 1 ) ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
44 |
27
|
recnd |
|- ( ph -> ( ( 1 / 3 ) ^ m ) e. CC ) |
45 |
|
3cn |
|- 3 e. CC |
46 |
|
3ne0 |
|- 3 =/= 0 |
47 |
|
divrec |
|- ( ( ( ( 1 / 3 ) ^ m ) e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( ( ( 1 / 3 ) ^ m ) / 3 ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
48 |
45 46 47
|
mp3an23 |
|- ( ( ( 1 / 3 ) ^ m ) e. CC -> ( ( ( 1 / 3 ) ^ m ) / 3 ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
49 |
44 48
|
syl |
|- ( ph -> ( ( ( 1 / 3 ) ^ m ) / 3 ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
50 |
43 49
|
eqtr4d |
|- ( ph -> ( ( 1 / 3 ) ^ ( m + 1 ) ) = ( ( ( 1 / 3 ) ^ m ) / 3 ) ) |
51 |
50
|
oveq1d |
|- ( ph -> ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) = ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 1 - ( 1 / 3 ) ) ) ) |
52 |
|
ax-1cn |
|- 1 e. CC |
53 |
45 46
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
54 |
|
divsubdir |
|- ( ( 3 e. CC /\ 1 e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) ) |
55 |
45 52 53 54
|
mp3an |
|- ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) |
56 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
57 |
56
|
oveq1i |
|- ( ( 3 - 1 ) / 3 ) = ( 2 / 3 ) |
58 |
45 46
|
dividi |
|- ( 3 / 3 ) = 1 |
59 |
58
|
oveq1i |
|- ( ( 3 / 3 ) - ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
60 |
55 57 59
|
3eqtr3ri |
|- ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) |
61 |
60
|
oveq2i |
|- ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 1 - ( 1 / 3 ) ) ) = ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 2 / 3 ) ) |
62 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
63 |
|
divcan7 |
|- ( ( ( ( 1 / 3 ) ^ m ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
64 |
62 53 63
|
mp3an23 |
|- ( ( ( 1 / 3 ) ^ m ) e. CC -> ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
65 |
44 64
|
syl |
|- ( ph -> ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
66 |
61 65
|
eqtrid |
|- ( ph -> ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 1 - ( 1 / 3 ) ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
67 |
51 66
|
eqtrd |
|- ( ph -> ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
68 |
67
|
oveq2d |
|- ( ph -> ( 0 + ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) = ( 0 + ( ( ( 1 / 3 ) ^ m ) / 2 ) ) ) |
69 |
28
|
recnd |
|- ( ph -> ( ( ( 1 / 3 ) ^ m ) / 2 ) e. CC ) |
70 |
69
|
addid2d |
|- ( ph -> ( 0 + ( ( ( 1 / 3 ) ^ m ) / 2 ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
71 |
40 68 70
|
3eqtrd |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
72 |
38 71
|
breqtrd |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) <_ ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
73 |
|
rphalflt |
|- ( ( ( 1 / 3 ) ^ m ) e. RR+ -> ( ( ( 1 / 3 ) ^ m ) / 2 ) < ( ( 1 / 3 ) ^ m ) ) |
74 |
26 73
|
syl |
|- ( ph -> ( ( ( 1 / 3 ) ^ m ) / 2 ) < ( ( 1 / 3 ) ^ m ) ) |
75 |
12 28 27 72 74
|
lelttrd |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) < ( ( 1 / 3 ) ^ m ) ) |
76 |
|
eluznn |
|- ( ( m e. NN /\ k e. ( ZZ>= ` m ) ) -> k e. NN ) |
77 |
10 76
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` m ) ) -> k e. NN ) |
78 |
1
|
rpnnen2lem1 |
|- ( ( { m } C_ NN /\ k e. NN ) -> ( ( F ` { m } ) ` k ) = if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
79 |
32 77 78
|
syl2an2r |
|- ( ( ph /\ k e. ( ZZ>= ` m ) ) -> ( ( F ` { m } ) ` k ) = if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
80 |
79
|
sumeq2dv |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` { m } ) ` k ) = sum_ k e. ( ZZ>= ` m ) if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
81 |
|
uzid |
|- ( m e. ZZ -> m e. ( ZZ>= ` m ) ) |
82 |
24 81
|
syl |
|- ( ph -> m e. ( ZZ>= ` m ) ) |
83 |
82
|
snssd |
|- ( ph -> { m } C_ ( ZZ>= ` m ) ) |
84 |
|
vex |
|- m e. _V |
85 |
|
oveq2 |
|- ( k = m -> ( ( 1 / 3 ) ^ k ) = ( ( 1 / 3 ) ^ m ) ) |
86 |
85
|
eleq1d |
|- ( k = m -> ( ( ( 1 / 3 ) ^ k ) e. CC <-> ( ( 1 / 3 ) ^ m ) e. CC ) ) |
87 |
84 86
|
ralsn |
|- ( A. k e. { m } ( ( 1 / 3 ) ^ k ) e. CC <-> ( ( 1 / 3 ) ^ m ) e. CC ) |
88 |
44 87
|
sylibr |
|- ( ph -> A. k e. { m } ( ( 1 / 3 ) ^ k ) e. CC ) |
89 |
|
ssidd |
|- ( ph -> ( ZZ>= ` m ) C_ ( ZZ>= ` m ) ) |
90 |
89
|
orcd |
|- ( ph -> ( ( ZZ>= ` m ) C_ ( ZZ>= ` m ) \/ ( ZZ>= ` m ) e. Fin ) ) |
91 |
|
sumss2 |
|- ( ( ( { m } C_ ( ZZ>= ` m ) /\ A. k e. { m } ( ( 1 / 3 ) ^ k ) e. CC ) /\ ( ( ZZ>= ` m ) C_ ( ZZ>= ` m ) \/ ( ZZ>= ` m ) e. Fin ) ) -> sum_ k e. { m } ( ( 1 / 3 ) ^ k ) = sum_ k e. ( ZZ>= ` m ) if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
92 |
83 88 90 91
|
syl21anc |
|- ( ph -> sum_ k e. { m } ( ( 1 / 3 ) ^ k ) = sum_ k e. ( ZZ>= ` m ) if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
93 |
85
|
sumsn |
|- ( ( m e. NN /\ ( ( 1 / 3 ) ^ m ) e. CC ) -> sum_ k e. { m } ( ( 1 / 3 ) ^ k ) = ( ( 1 / 3 ) ^ m ) ) |
94 |
10 44 93
|
syl2anc |
|- ( ph -> sum_ k e. { m } ( ( 1 / 3 ) ^ k ) = ( ( 1 / 3 ) ^ m ) ) |
95 |
80 92 94
|
3eqtr2d |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` { m } ) ` k ) = ( ( 1 / 3 ) ^ m ) ) |
96 |
4 7
|
syl |
|- ( ph -> m e. A ) |
97 |
96
|
snssd |
|- ( ph -> { m } C_ A ) |
98 |
1
|
rpnnen2lem7 |
|- ( ( { m } C_ A /\ A C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` { m } ) ` k ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) |
99 |
97 2 10 98
|
syl3anc |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` { m } ) ` k ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) |
100 |
95 99
|
eqbrtrrd |
|- ( ph -> ( ( 1 / 3 ) ^ m ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) |
101 |
12 18 20 75 100
|
ltletrd |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) < sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) |
102 |
12 101
|
gtned |
|- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) =/= sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) |
103 |
1 2 3 4 5 6
|
rpnnen2lem10 |
|- ( ( ph /\ ps ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) |
104 |
103
|
ex |
|- ( ph -> ( ps -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
105 |
104
|
necon3ad |
|- ( ph -> ( sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) =/= sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) -> -. ps ) ) |
106 |
102 105
|
mpd |
|- ( ph -> -. ps ) |