Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
nnex |
|- NN e. _V |
3 |
2
|
elpw2 |
|- ( A e. ~P NN <-> A C_ NN ) |
4 |
|
eleq2 |
|- ( x = A -> ( n e. x <-> n e. A ) ) |
5 |
4
|
ifbid |
|- ( x = A -> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) = if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) |
6 |
5
|
mpteq2dv |
|- ( x = A -> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) = ( n e. NN |-> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
7 |
2
|
mptex |
|- ( n e. NN |-> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) e. _V |
8 |
6 1 7
|
fvmpt |
|- ( A e. ~P NN -> ( F ` A ) = ( n e. NN |-> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
9 |
3 8
|
sylbir |
|- ( A C_ NN -> ( F ` A ) = ( n e. NN |-> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
10 |
|
1re |
|- 1 e. RR |
11 |
|
3nn |
|- 3 e. NN |
12 |
|
nndivre |
|- ( ( 1 e. RR /\ 3 e. NN ) -> ( 1 / 3 ) e. RR ) |
13 |
10 11 12
|
mp2an |
|- ( 1 / 3 ) e. RR |
14 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
15 |
|
reexpcl |
|- ( ( ( 1 / 3 ) e. RR /\ n e. NN0 ) -> ( ( 1 / 3 ) ^ n ) e. RR ) |
16 |
13 14 15
|
sylancr |
|- ( n e. NN -> ( ( 1 / 3 ) ^ n ) e. RR ) |
17 |
|
0re |
|- 0 e. RR |
18 |
|
ifcl |
|- ( ( ( ( 1 / 3 ) ^ n ) e. RR /\ 0 e. RR ) -> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) e. RR ) |
19 |
16 17 18
|
sylancl |
|- ( n e. NN -> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) e. RR ) |
20 |
19
|
adantl |
|- ( ( A C_ NN /\ n e. NN ) -> if ( n e. A , ( ( 1 / 3 ) ^ n ) , 0 ) e. RR ) |
21 |
9 20
|
fmpt3d |
|- ( A C_ NN -> ( F ` A ) : NN --> RR ) |