Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
1re |
|- 1 e. RR |
3 |
|
3nn |
|- 3 e. NN |
4 |
|
nndivre |
|- ( ( 1 e. RR /\ 3 e. NN ) -> ( 1 / 3 ) e. RR ) |
5 |
2 3 4
|
mp2an |
|- ( 1 / 3 ) e. RR |
6 |
5
|
recni |
|- ( 1 / 3 ) e. CC |
7 |
6
|
a1i |
|- ( T. -> ( 1 / 3 ) e. CC ) |
8 |
|
0re |
|- 0 e. RR |
9 |
|
3re |
|- 3 e. RR |
10 |
|
3pos |
|- 0 < 3 |
11 |
9 10
|
recgt0ii |
|- 0 < ( 1 / 3 ) |
12 |
8 5 11
|
ltleii |
|- 0 <_ ( 1 / 3 ) |
13 |
|
absid |
|- ( ( ( 1 / 3 ) e. RR /\ 0 <_ ( 1 / 3 ) ) -> ( abs ` ( 1 / 3 ) ) = ( 1 / 3 ) ) |
14 |
5 12 13
|
mp2an |
|- ( abs ` ( 1 / 3 ) ) = ( 1 / 3 ) |
15 |
|
1lt3 |
|- 1 < 3 |
16 |
|
recgt1 |
|- ( ( 3 e. RR /\ 0 < 3 ) -> ( 1 < 3 <-> ( 1 / 3 ) < 1 ) ) |
17 |
9 10 16
|
mp2an |
|- ( 1 < 3 <-> ( 1 / 3 ) < 1 ) |
18 |
15 17
|
mpbi |
|- ( 1 / 3 ) < 1 |
19 |
14 18
|
eqbrtri |
|- ( abs ` ( 1 / 3 ) ) < 1 |
20 |
19
|
a1i |
|- ( T. -> ( abs ` ( 1 / 3 ) ) < 1 ) |
21 |
|
1nn0 |
|- 1 e. NN0 |
22 |
21
|
a1i |
|- ( T. -> 1 e. NN0 ) |
23 |
|
ssid |
|- NN C_ NN |
24 |
|
simpr |
|- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> k e. ( ZZ>= ` 1 ) ) |
25 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
26 |
24 25
|
eleqtrrdi |
|- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> k e. NN ) |
27 |
1
|
rpnnen2lem1 |
|- ( ( NN C_ NN /\ k e. NN ) -> ( ( F ` NN ) ` k ) = if ( k e. NN , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
28 |
23 26 27
|
sylancr |
|- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> ( ( F ` NN ) ` k ) = if ( k e. NN , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
29 |
26
|
iftrued |
|- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> if ( k e. NN , ( ( 1 / 3 ) ^ k ) , 0 ) = ( ( 1 / 3 ) ^ k ) ) |
30 |
28 29
|
eqtrd |
|- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> ( ( F ` NN ) ` k ) = ( ( 1 / 3 ) ^ k ) ) |
31 |
7 20 22 30
|
geolim2 |
|- ( T. -> seq 1 ( + , ( F ` NN ) ) ~~> ( ( ( 1 / 3 ) ^ 1 ) / ( 1 - ( 1 / 3 ) ) ) ) |
32 |
31
|
mptru |
|- seq 1 ( + , ( F ` NN ) ) ~~> ( ( ( 1 / 3 ) ^ 1 ) / ( 1 - ( 1 / 3 ) ) ) |
33 |
|
exp1 |
|- ( ( 1 / 3 ) e. CC -> ( ( 1 / 3 ) ^ 1 ) = ( 1 / 3 ) ) |
34 |
6 33
|
ax-mp |
|- ( ( 1 / 3 ) ^ 1 ) = ( 1 / 3 ) |
35 |
|
3cn |
|- 3 e. CC |
36 |
|
ax-1cn |
|- 1 e. CC |
37 |
|
3ne0 |
|- 3 =/= 0 |
38 |
35 37
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
39 |
|
divsubdir |
|- ( ( 3 e. CC /\ 1 e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) ) |
40 |
35 36 38 39
|
mp3an |
|- ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) |
41 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
42 |
41
|
oveq1i |
|- ( ( 3 - 1 ) / 3 ) = ( 2 / 3 ) |
43 |
35 37
|
dividi |
|- ( 3 / 3 ) = 1 |
44 |
43
|
oveq1i |
|- ( ( 3 / 3 ) - ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
45 |
40 42 44
|
3eqtr3ri |
|- ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) |
46 |
34 45
|
oveq12i |
|- ( ( ( 1 / 3 ) ^ 1 ) / ( 1 - ( 1 / 3 ) ) ) = ( ( 1 / 3 ) / ( 2 / 3 ) ) |
47 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
48 |
|
divcan7 |
|- ( ( 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 1 / 3 ) / ( 2 / 3 ) ) = ( 1 / 2 ) ) |
49 |
36 47 38 48
|
mp3an |
|- ( ( 1 / 3 ) / ( 2 / 3 ) ) = ( 1 / 2 ) |
50 |
46 49
|
eqtri |
|- ( ( ( 1 / 3 ) ^ 1 ) / ( 1 - ( 1 / 3 ) ) ) = ( 1 / 2 ) |
51 |
32 50
|
breqtri |
|- seq 1 ( + , ( F ` NN ) ) ~~> ( 1 / 2 ) |