Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
|
1nn |
|- 1 e. NN |
4 |
3
|
a1i |
|- ( A C_ NN -> 1 e. NN ) |
5 |
|
ssid |
|- NN C_ NN |
6 |
1
|
rpnnen2lem2 |
|- ( NN C_ NN -> ( F ` NN ) : NN --> RR ) |
7 |
5 6
|
mp1i |
|- ( A C_ NN -> ( F ` NN ) : NN --> RR ) |
8 |
7
|
ffvelrnda |
|- ( ( A C_ NN /\ k e. NN ) -> ( ( F ` NN ) ` k ) e. RR ) |
9 |
1
|
rpnnen2lem2 |
|- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
10 |
9
|
ffvelrnda |
|- ( ( A C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) e. RR ) |
11 |
1
|
rpnnen2lem3 |
|- seq 1 ( + , ( F ` NN ) ) ~~> ( 1 / 2 ) |
12 |
|
seqex |
|- seq 1 ( + , ( F ` NN ) ) e. _V |
13 |
|
ovex |
|- ( 1 / 2 ) e. _V |
14 |
12 13
|
breldm |
|- ( seq 1 ( + , ( F ` NN ) ) ~~> ( 1 / 2 ) -> seq 1 ( + , ( F ` NN ) ) e. dom ~~> ) |
15 |
11 14
|
mp1i |
|- ( A C_ NN -> seq 1 ( + , ( F ` NN ) ) e. dom ~~> ) |
16 |
|
elnnuz |
|- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
17 |
1
|
rpnnen2lem4 |
|- ( ( A C_ NN /\ NN C_ NN /\ k e. NN ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` NN ) ` k ) ) ) |
18 |
5 17
|
mp3an2 |
|- ( ( A C_ NN /\ k e. NN ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` NN ) ` k ) ) ) |
19 |
16 18
|
sylan2br |
|- ( ( A C_ NN /\ k e. ( ZZ>= ` 1 ) ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` NN ) ` k ) ) ) |
20 |
19
|
simpld |
|- ( ( A C_ NN /\ k e. ( ZZ>= ` 1 ) ) -> 0 <_ ( ( F ` A ) ` k ) ) |
21 |
19
|
simprd |
|- ( ( A C_ NN /\ k e. ( ZZ>= ` 1 ) ) -> ( ( F ` A ) ` k ) <_ ( ( F ` NN ) ` k ) ) |
22 |
2 4 8 10 15 20 21
|
cvgcmp |
|- ( A C_ NN -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
23 |
22
|
adantr |
|- ( ( A C_ NN /\ M e. NN ) -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
24 |
|
simpr |
|- ( ( A C_ NN /\ M e. NN ) -> M e. NN ) |
25 |
10
|
adantlr |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. RR ) |
26 |
25
|
recnd |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. CC ) |
27 |
2 24 26
|
iserex |
|- ( ( A C_ NN /\ M e. NN ) -> ( seq 1 ( + , ( F ` A ) ) e. dom ~~> <-> seq M ( + , ( F ` A ) ) e. dom ~~> ) ) |
28 |
23 27
|
mpbid |
|- ( ( A C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |