Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
3 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
4 |
3
|
adantl |
|- ( ( A C_ NN /\ M e. NN ) -> M e. ZZ ) |
5 |
|
eqidd |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) = ( ( F ` A ) ` k ) ) |
6 |
1
|
rpnnen2lem2 |
|- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
7 |
6
|
ad2antrr |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` A ) : NN --> RR ) |
8 |
|
eluznn |
|- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
9 |
8
|
adantll |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
10 |
7 9
|
ffvelrnd |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) e. RR ) |
11 |
1
|
rpnnen2lem5 |
|- ( ( A C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |
12 |
2 4 5 10 11
|
isumrecl |
|- ( ( A C_ NN /\ M e. NN ) -> sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) e. RR ) |