Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
3 |
|
simp3 |
|- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> M e. NN ) |
4 |
3
|
nnzd |
|- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> M e. ZZ ) |
5 |
|
eqidd |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) = ( ( F ` A ) ` k ) ) |
6 |
|
eluznn |
|- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
7 |
3 6
|
sylan |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
8 |
|
sstr |
|- ( ( A C_ B /\ B C_ NN ) -> A C_ NN ) |
9 |
8
|
3adant3 |
|- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> A C_ NN ) |
10 |
1
|
rpnnen2lem2 |
|- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
11 |
9 10
|
syl |
|- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> ( F ` A ) : NN --> RR ) |
12 |
11
|
ffvelrnda |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. RR ) |
13 |
7 12
|
syldan |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) e. RR ) |
14 |
|
eqidd |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` B ) ` k ) = ( ( F ` B ) ` k ) ) |
15 |
1
|
rpnnen2lem2 |
|- ( B C_ NN -> ( F ` B ) : NN --> RR ) |
16 |
15
|
3ad2ant2 |
|- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> ( F ` B ) : NN --> RR ) |
17 |
16
|
ffvelrnda |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` B ) ` k ) e. RR ) |
18 |
7 17
|
syldan |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` B ) ` k ) e. RR ) |
19 |
1
|
rpnnen2lem4 |
|- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) ) |
20 |
19
|
simprd |
|- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
21 |
20
|
3expa |
|- ( ( ( A C_ B /\ B C_ NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
22 |
21
|
3adantl3 |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
23 |
7 22
|
syldan |
|- ( ( ( A C_ B /\ B C_ NN /\ M e. NN ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
24 |
1
|
rpnnen2lem5 |
|- ( ( A C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |
25 |
8 24
|
stoic3 |
|- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> seq M ( + , ( F ` A ) ) e. dom ~~> ) |
26 |
1
|
rpnnen2lem5 |
|- ( ( B C_ NN /\ M e. NN ) -> seq M ( + , ( F ` B ) ) e. dom ~~> ) |
27 |
26
|
3adant1 |
|- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> seq M ( + , ( F ` B ) ) e. dom ~~> ) |
28 |
2 4 5 13 14 18 23 25 27
|
isumle |
|- ( ( A C_ B /\ B C_ NN /\ M e. NN ) -> sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) <_ sum_ k e. ( ZZ>= ` M ) ( ( F ` B ) ` k ) ) |